MCP-Mirror

Image Generation MCP Server

Community MCP-Mirror
Updated

Image Generation MCP Server using Together.AI - A Model Context Protocol server for AI image generation

Image Generation MCP Server

A Model Context Protocol (MCP) server that enables seamless generation of high-quality images using the Flux.1 Schnell model via Together AI. This server provides a standardized interface to specify image generation parameters.

Features

  • High-quality image generation powered by the Flux.1 Schnell model
  • Support for customizable dimensions (width and height)
  • Clear error handling for prompt validation and API issues
  • Easy integration with MCP-compatible clients
  • Optional image saving to disk in PNG format

Installation

npm install together-mcp

Or run directly:

npx together-mcp@latest

Configuration

Add to your MCP server configuration:

Configuration Example
{
  "mcpServers": {
    "together-image-gen": {
      "command": "npx",
      "args": ["together-mcp@latest -y"],
      "env": {
        "TOGETHER_API_KEY": "<API KEY>"
      }
    }
  }
}

Usage

The server provides one tool: generate_image

Using generate_image

This tool has only one required parameter - the prompt. All other parameters are optional and use sensible defaults if not provided.

Parameters
{
  // Required
  prompt: string;          // Text description of the image to generate

  // Optional with defaults
  model?: string;          // Default: "black-forest-labs/FLUX.1-schnell-Free"
  width?: number;          // Default: 1024 (min: 128, max: 2048)
  height?: number;         // Default: 768 (min: 128, max: 2048)
  steps?: number;          // Default: 1 (min: 1, max: 100)
  n?: number;             // Default: 1 (max: 4)
  response_format?: string; // Default: "b64_json" (options: ["b64_json", "url"])
  image_path?: string;     // Optional: Path to save the generated image as PNG
}
Minimal Request Example

Only the prompt is required:

{
  "name": "generate_image",
  "arguments": {
    "prompt": "A serene mountain landscape at sunset"
  }
}
Full Request Example with Image Saving

Override any defaults and specify a path to save the image:

{
  "name": "generate_image",
  "arguments": {
    "prompt": "A serene mountain landscape at sunset",
    "width": 1024,
    "height": 768,
    "steps": 20,
    "n": 1,
    "response_format": "b64_json",
    "model": "black-forest-labs/FLUX.1-schnell-Free",
    "image_path": "/path/to/save/image.png"
  }
}
Response Format

The response will be a JSON object containing:

{
  "id": string,        // Generation ID
  "model": string,     // Model used
  "object": "list",
  "data": [
    {
      "timings": {
        "inference": number  // Time taken for inference
      },
      "index": number,      // Image index
      "b64_json": string    // Base64 encoded image data (if response_format is "b64_json")
      // OR
      "url": string        // URL to generated image (if response_format is "url")
    }
  ]
}

If image_path was provided and the save was successful, the response will include confirmation of the save location.

Default Values

If not specified in the request, these defaults are used:

  • model: "black-forest-labs/FLUX.1-schnell-Free"
  • width: 1024
  • height: 768
  • steps: 1
  • n: 1
  • response_format: "b64_json"

Important Notes

  1. Only the prompt parameter is required
  2. All optional parameters use defaults if not provided
  3. When provided, parameters must meet their constraints (e.g., width/height ranges)
  4. Base64 responses can be large - use URL format for larger images
  5. When saving images, ensure the specified directory exists and is writable

Prerequisites

  • Node.js >= 16
  • Together AI API key
    1. Sign in at api.together.xyz
    2. Navigate to API Keys settings
    3. Click "Create" to generate a new API key
    4. Copy the generated key for use in your MCP configuration

Dependencies

{
  "@modelcontextprotocol/sdk": "0.6.0",
  "axios": "^1.6.7"
}

Development

Clone and build the project:

git clone https://github.com/manascb1344/together-mcp-server
cd together-mcp-server
npm install
npm run build

Available Scripts

  • npm run build - Build the TypeScript project
  • npm run watch - Watch for changes and rebuild
  • npm run inspector - Run MCP inspector

Contributing

Contributions are welcome! Please follow these steps:

  1. Fork the repository
  2. Create a new branch (feature/my-new-feature)
  3. Commit your changes
  4. Push the branch to your fork
  5. Open a Pull Request

Feature requests and bug reports can be submitted via GitHub Issues. Please check existing issues before creating a new one.

For significant changes, please open an issue first to discuss your proposed changes.

License

This project is licensed under the MIT License. See the LICENSE file for details.

MCP Server · Populars

MCP Server · New

    render-oss

    Render MCP Server

    The Official Render MCP Server

    Community render-oss
    nhevers

    claude-recall

    Long-term memory layer for Clawd & Claude Code that learns and recalls your project context automatically

    Community nhevers
    VienLi

    lark-tools-mcp

    MCP server provides Feishu related operations to AI encoding agents such as cursor 飞书MCP插件,读取文档、发送消息、合同审批、数据处理.....

    Community VienLi
    joeseesun

    🎯 多源内容 → NotebookLM 智能处理器

    Claude Skill: Multi-source content processor for NotebookLM. Supports WeChat articles, web pages, YouTube, PDF, Markdown, search queries → Podcast/PPT/MindMap/Quiz etc.

    Community joeseesun
    avivsinai

    Langfuse MCP Server

    A Model Context Protocol (MCP) server for Langfuse, enabling AI agents to query Langfuse trace data for enhanced debugging and observability

    Community avivsinai