MCP-Mirror

Google Search MCP Server

Community MCP-Mirror
Updated

MCP server for Google search and webpage analysis

Google Search MCP Server

An MCP (Model Context Protocol) server that provides Google search capabilities and webpage content analysis tools. This server enables AI models to perform Google searches and analyze webpage content programmatically.

Features

  • Google Custom Search integration
  • Webpage content analysis
  • Batch webpage analysis
  • MCP-compliant interface

Prerequisites

  • Node.js (v16 or higher)
  • Python (v3.8 or higher)
  • Google Cloud Platform account
  • Custom Search Engine ID
  • Google API Key

Installation

  1. Clone the repository
  2. Install Node.js dependencies:
npm install
  1. Install Python dependencies:
pip install flask google-api-python-client flask-cors

Configuration

  1. Create a api-keys.json file in the root directory with your Google API credentials:
{
    "api_key": "your-google-api-key",
    "search_engine_id": "your-custom-search-engine-id"
}
  1. Add the server configuration to your MCP settings file (typically located at %APPDATA%/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json):
{
  "mcpServers": {
    "google-search": {
      "command": "npm",
      "args": ["run", "start:all"],
      "cwd": "/path/to/google-search-server"
    }
  }
}

Building

npm run build

Running

Start both the TypeScript and Python servers:

npm run start:all

Or run them separately:

  • TypeScript server: npm start
  • Python servers: npm run start:python

Available Tools

1. search

Perform Google searches and retrieve results.

{
  "name": "search",
  "arguments": {
    "query": "your search query",
    "num_results": 5 // optional, default: 5
  }
}

2. analyze_webpage

Extract and analyze content from a single webpage.

{
  "name": "analyze_webpage",
  "arguments": {
    "url": "https://example.com"
  }
}

3. batch_analyze_webpages

Analyze multiple webpages in a single request.

{
  "name": "batch_analyze_webpages",
  "arguments": {
    "urls": [
      "https://example1.com",
      "https://example2.com"
    ]
  }
}

Getting Google API Credentials

  1. Go to the Google Cloud Console
  2. Create a new project or select an existing one
  3. Enable the Custom Search API
  4. Create API credentials (API Key)
  5. Go to the Custom Search Engine page
  6. Create a new search engine and get your Search Engine ID
  7. Add these credentials to your api-keys.json file

Error Handling

The server provides detailed error messages for:

  • Missing or invalid API credentials
  • Failed search requests
  • Invalid webpage URLs
  • Network connectivity issues

Architecture

The server consists of two main components:

  1. TypeScript MCP Server: Handles MCP protocol communication and provides the tool interface
  2. Python Flask Server: Manages Google API interactions and webpage content analysis

License

MIT

MCP Server · Populars

MCP Server · New

    steveyegge

    beads-mcp

    Beads - A memory upgrade for your coding agent

    Community steveyegge
    mailtrap

    MCP Mailtrap Server

    Official mailtrap.io MCP server

    Community mailtrap
    statespace-tech

    ToolFront

    Data environments for AI agents

    Community statespace-tech
    PleasePrompto

    NotebookLM MCP Server

    MCP server for NotebookLM - Let your AI agents (Claude Code, Codex) research documentation directly with grounded, citation-backed answers from Gemini. Persistent auth, library management, cross-client sharing. Zero hallucinations, just your knowledge base.

    Community PleasePrompto
    pulsemcp

    Claude Code Agent MCP Server

    MCP (Model Context Protocol) Servers authored and maintained by the PulseMCP team. We build reliable servers thoughtfully designed specifically for MCP Client-powered workflows.

    Community pulsemcp