arangodb

Python-Arango

Community arangodb
Updated

The official ArangoDB Python driver.

Logo

CircleCICodeQLDocsCoverage StatusLast commit

PyPI version badgePython versions badge

LicenseCode style: blackDownloads

Python-Arango

Python driver for ArangoDB, a scalable multi-modeldatabase natively supporting documents, graphs and search.

If you're interested in using asyncio, please check python-arango-async.

Requirements

  • ArangoDB version 3.11+
  • Python version 3.9+

Installation

pip install python-arango --upgrade

Getting Started

Here is a simple usage example:

from arango import ArangoClient

# Initialize the client for ArangoDB.
client = ArangoClient(hosts="http://localhost:8529")

# Connect to "_system" database as root user.
sys_db = client.db("_system", username="root", password="passwd")

# Create a new database named "test".
sys_db.create_database("test")

# Connect to "test" database as root user.
db = client.db("test", username="root", password="passwd")

# Create a new collection named "students".
students = db.create_collection("students")

# Add a persistent index to the collection.
students.add_index({'type': 'persistent', 'fields': ['name'], 'unique': True})

# Insert new documents into the collection.
students.insert({"name": "jane", "age": 39})
students.insert({"name": "josh", "age": 18})
students.insert({"name": "judy", "age": 21})

# Execute an AQL query and iterate through the result cursor.
cursor = db.aql.execute("FOR doc IN students RETURN doc")
student_names = [document["name"] for document in cursor]

Another example with graphs:

from arango import ArangoClient

# Initialize the client for ArangoDB.
client = ArangoClient(hosts="http://localhost:8529")

# Connect to "test" database as root user.
db = client.db("test", username="root", password="passwd")

# Create a new graph named "school".
graph = db.create_graph("school")

# Create a new EnterpriseGraph [Enterprise Edition]
eegraph = db.create_graph(
    name="school",
    smart=True)

# Create vertex collections for the graph.
students = graph.create_vertex_collection("students")
lectures = graph.create_vertex_collection("lectures")

# Create an edge definition (relation) for the graph.
edges = graph.create_edge_definition(
    edge_collection="register",
    from_vertex_collections=["students"],
    to_vertex_collections=["lectures"]
)

# Insert vertex documents into "students" (from) vertex collection.
students.insert({"_key": "01", "full_name": "Anna Smith"})
students.insert({"_key": "02", "full_name": "Jake Clark"})
students.insert({"_key": "03", "full_name": "Lisa Jones"})

# Insert vertex documents into "lectures" (to) vertex collection.
lectures.insert({"_key": "MAT101", "title": "Calculus"})
lectures.insert({"_key": "STA101", "title": "Statistics"})
lectures.insert({"_key": "CSC101", "title": "Algorithms"})

# Insert edge documents into "register" edge collection.
edges.insert({"_from": "students/01", "_to": "lectures/MAT101"})
edges.insert({"_from": "students/01", "_to": "lectures/STA101"})
edges.insert({"_from": "students/01", "_to": "lectures/CSC101"})
edges.insert({"_from": "students/02", "_to": "lectures/MAT101"})
edges.insert({"_from": "students/02", "_to": "lectures/STA101"})
edges.insert({"_from": "students/03", "_to": "lectures/CSC101"})

# Traverse the graph in outbound direction, breath-first.
query = """
    FOR v, e, p IN 1..3 OUTBOUND 'students/01' GRAPH 'school'
    OPTIONS { bfs: true, uniqueVertices: 'global' }
    RETURN {vertex: v, edge: e, path: p}
    """
cursor = db.aql.execute(query)

Please see the documentation for more details.

MCP Server · Populars

MCP Server · New

    appwrite

    Appwrite MCP server

    Appwrite’s MCP server. Operating your backend has never been easier.

    Community appwrite
    pydantic

    Pydantic Validation

    Data validation using Python type hints

    Community pydantic
    arangodb

    Python-Arango

    The official ArangoDB Python driver.

    Community arangodb
    probelabs

    Probe

    Probe is an AI-friendly, fully local, semantic code search engine which which works with for large codebases. The final missing building block for next generation of AI coding tools.

    Community probelabs
    probelabs

    Docs MCP Server

    Turn any github repo to MCP server, and chat with code or docs

    Community probelabs