call518

MCP-Airflow-API

Community call518
Updated

Model Context Protocol (MCP) server for Apache Airflow API integration. Provides comprehensive tools for managing Airflow clusters including service operations, configuration management, status monitoring, and request tracking.

MCP-Airflow-API

MSeeP.ai Security Assessment Badge

Verified on MSeeP

Deploy to PyPI with tag

Model Context Protocol (MCP) server for Apache Airflow API integration. This project provides natural language MCP tools for essential Airflow cluster operations.

Note: To minimize operational risk, this MCP server currently focuses on read-only (query) operations only. APIs that modify the target Airflow cluster (e.g., triggering or pausing DAGs) are planned but currently on hold.

Tested and supported Airflow version: 2.10.2 (API Version: v1) and WSL(networkingMode = bridged)

Example Query - List DAGs

ScreenShot-009

Usages

This MCP server supports two connection modes: stdio (traditional) and streamable-http (Docker-based). The transport mode is automatically determined by the MCP_SERVER_PORT environment variable.

Method 1: Local MCP (transport="stdio")

{
  "mcpServers": {
    "airflow-api": {
      "command": "uvx",
      "args": ["--python", "3.11", "mcp-airflow-api"],
      "env": {
        "AIRFLOW_API_URL": "http://localhost:8080/api/v1",
        "AIRFLOW_API_USERNAME": "airflow",
        "AIRFLOW_API_PASSWORD": "airflow",
        "AIRFLOW_LOG_LEVEL": "INFO"
      }
    }
  }
}

Method 2: Remote MCP (transport="streamable-http")

{
  "mcpServers": {
    "airflow-api": {
      "type": "streamable-http",
      "url": "http://host.docker.internal:18002/mcp"
    }
  }
}

Transport Selection Logic:

  • stdio mode: When MCP_SERVER_PORT environment variable is NOT set
  • streamable-http mode: When MCP_SERVER_PORT environment variable is set

QuickStart (Demo - streamable-http): Running OpenWebUI and MCP-Airflow-API with Docker

  1. Prepare an Airflow Demo cluster
  1. Install Docker and Docker Compose
  • Ensure Docker Engine and Docker Compose are installed and running

Setup and Configuration

  1. Clone and Configure
git clone <repository-url>
cd MCP-Airflow-API
  1. Ensure mcp-config.json
  • Check and edit mcp-config.json.http
  • The file is pre-configured for streamable-http transport
  1. Ensure docker-compose.yml
  • Check Network Port numbers that you want.
  • (NOTE) This Tested on WSL2(networkingMode = bridged)
  1. Start the Docker Services
docker-compose up -d

Service Access and Verification

  1. Check MCP Server REST-API (via MCPO Swagger)
  1. Access Open WebUI
  1. Register the MCP server
  1. Setup LLM
  • In [Admin Pannel] - [Setting] - [Connection], configure API Key for OpenAI or Ollama.
  1. Completed!

Docker Configuration

The project includes a comprehensive Docker Compose setup with three separate services for optimal isolation and management:

Services Architecture

  1. open-webui: Web interface (port 3002)

    • Custom Open WebUI with integrated MCPO proxy support
    • Built from Dockerfile.OpenWebUI-MCPO-Proxy
  2. mcp-server: MCP Airflow API server (port 18002, internal 18000)

    • FastMCP-based MCP server with Airflow API tools
    • Built from Dockerfile.MCP-Server (Rocky Linux 9.3, Python 3.11)
    • Runs http transport when MCP_SERVER_PORT is set
  3. mcpo-proxy: MCP-to-OpenAPI proxy (port 8002)

    • MCPO proxy for converting MCP tools to REST API endpoints
    • Built from Dockerfile.MCPO-Proxy (Rocky Linux 9.3, Python 3.11)
    • Provides Swagger documentation at /docs

Configuration Files

The Docker setup uses these configuration files:

  • docker-compose.yml: Multi-service orchestration
  • mcp-config.json.stdio: MCPO proxy configuration for stdio transport
  • mcp-config.json.http: MCPO proxy configuration for streamable-http transport
  • Dockerfile.MCPO-Proxy: MCPO proxy container with Rocky Linux 9.3 base
  • Dockerfile.MCP-Server: MCP server container with FastMCP runtime

Environment Variables

The MCP server container uses these environment variables:

  • MCP_SERVER_PORT=18000: Enables streamable-http transport mode
  • AIRFLOW_API_URL: Your Airflow API endpoint
  • AIRFLOW_API_USERNAME: Airflow username
  • AIRFLOW_API_PASSWORD: Airflow password

Service Access

Container-to-Host Communication

The configuration uses host.docker.internal:18002 for proper Docker networking when connecting from containers to host services.

Features

  • List all DAGs in the Airflow cluster
  • Monitor running/failed DAG runs
  • Trigger DAG runs on demand
  • Check cluster health and version information
  • Minimal, LLM-friendly output for all tools
  • Easy integration with MCP Inspector, OpenWebUI, Smithery, etc.
  • Enhanced for Large-Scale Environments: Improved default limits and pagination support for enterprise Airflow deployments (100+ to 1000+ DAGs)

Environment Variables Configuration

Required Environment Variables

These environment variables are essential for connecting to your Airflow instance:

  • AIRFLOW_API_URL: The base URL of your Airflow REST API endpoint

    • Example: http://localhost:8080/api/v1
    • Example: https://airflow.company.com/api/v1
  • AIRFLOW_API_USERNAME: Username for Airflow API authentication

    • Example: airflow
    • Example: admin
  • AIRFLOW_API_PASSWORD: Password for Airflow API authentication

    • Example: airflow
    • Example: your-secure-password

Transport Control Variables

  • MCP_SERVER_PORT: Controls the transport mode selection
    • When NOT set: Uses stdio transport (traditional MCP mode)
    • When set: Uses http transport (Docker mode)
    • Example: 18000 (for Docker container internal port)

Optional Configuration Variables

  • AIRFLOW_LOG_LEVEL: Controls logging verbosity
    • Values: DEBUG, INFO, WARNING, ERROR
    • Default: INFO

Available MCP Tools

DAG Management

  • list_dags(limit=20, offset=0, fetch_all=False, id_contains=None, name_contains=None) Returns all DAGs registered in the Airflow cluster with pagination support. Output: dag_id, dag_display_name, is_active, is_paused, owners, tags, plus pagination info (total_entries, limit, offset, has_more_pages, next_offset, pagination_info)

    Pagination Examples:

    • First 20 DAGs: list_dags()

    • Next 20 DAGs: list_dags(limit=20, offset=20)

    • Large batch: list_dags(limit=100, offset=0)

    • All DAGs at once: list_dags(limit=1000)

    • id_contains="etl" → Only DAGs whose dag_id contains "etl"

    • name_contains="daily" → Only DAGs whose display_name contains "daily"

    • If both are specified, only DAGs matching both conditions are returned

  • running_dags Returns all currently running DAG runs. Output: dag_id, run_id, state, execution_date, start_date, end_date

  • failed_dags Returns all recently failed DAG runs. Output: dag_id, run_id, state, execution_date, start_date, end_date

  • trigger_dag(dag_id) Immediately triggers the specified DAG. Output: dag_id, run_id, state, execution_date, start_date, end_date

  • pause_dag(dag_id) Pauses the specified DAG (prevents scheduling new runs). Output: dag_id, is_paused

  • unpause_dag(dag_id) Unpauses the specified DAG (allows scheduling new runs). Output: dag_id, is_paused

Cluster Management & Health

  • get_health Get the health status of the Airflow webserver instance. Output: metadatabase, scheduler, overall health status

  • get_version Get version information of the Airflow instance. Output: version, git_version, build_date, api_version

Pool Management

  • list_pools(limit=20, offset=0) List all pools in the Airflow instance with pagination support. Output: pools, total_entries, limit, offset, pool details with slots usage

  • get_pool(pool_name) Get detailed information about a specific pool. Output: name, slots, occupied_slots, running_slots, queued_slots, open_slots, description, utilization_percentage

Variable Management

  • list_variables(limit=20, offset=0, order_by="key") List all variables stored in Airflow with pagination support. Output: variables, total_entries, limit, offset, variable details with keys, values, and descriptions

  • get_variable(variable_key) Get detailed information about a specific variable by its key. Output: key, value, description, is_encrypted

Task Instance Management

  • list_task_instances_all(dag_id=None, dag_run_id=None, execution_date_gte=None, execution_date_lte=None, start_date_gte=None, start_date_lte=None, end_date_gte=None, end_date_lte=None, duration_gte=None, duration_lte=None, state=None, pool=None, queue=None, limit=20, offset=0) Lists task instances across all DAGs or filtered by specific criteria with comprehensive filtering options. Output: task_instances, total_entries, limit, offset, applied_filters

  • get_task_instance_details(dag_id, dag_run_id, task_id) Retrieves detailed information about a specific task instance. Output: Comprehensive task instance details including execution info, state, timing, configuration, and metadata

  • list_task_instances_batch(dag_ids=None, dag_run_ids=None, task_ids=None, execution_date_gte=None, execution_date_lte=None, start_date_gte=None, start_date_lte=None, end_date_gte=None, end_date_lte=None, duration_gte=None, duration_lte=None, state=None, pool=None, queue=None) Lists task instances in batch with multiple filtering criteria for bulk operations. Output: task_instances, total_entries, applied_filters, batch processing results

  • get_task_instance_extra_links(dag_id, dag_run_id, task_id) Lists extra links for a specific task instance (e.g., monitoring dashboards, logs, external resources). Output: task_id, dag_id, dag_run_id, extra_links, total_links

  • get_task_instance_logs(dag_id, dag_run_id, task_id, try_number=1, full_content=False, token=None) Retrieves logs for a specific task instance and its try number with content and metadata. Output: task_id, dag_id, dag_run_id, try_number, content, continuation_token, metadata

XCom Management

  • list_xcom_entries(dag_id, dag_run_id, task_id, limit=20, offset=0) Lists XCom entries for a specific task instance. Output: dag_id, dag_run_id, task_id, xcom_entries, total_entries, limit, offset

  • get_xcom_entry(dag_id, dag_run_id, task_id, xcom_key, map_index=-1) Retrieves a specific XCom entry for a task instance. Output: dag_id, dag_run_id, task_id, xcom_key, map_index, key, value, timestamp, execution_date, run_id

DAG Analysis & Monitoring

  • get_dag(dag_id) Retrieves comprehensive details for a specific DAG. Output: dag_id, description, schedule_interval, owners, tags, start_date, next_dagrun, etc.

  • dag_graph(dag_id) Retrieves task dependency graph structure for a specific DAG. Output: dag_id, tasks, dependencies, task relationships

  • list_tasks(dag_id) Lists all tasks for a specific DAG. Output: dag_id, tasks, task configuration details Output: dag_id, tasks, dependencies, task relationships

  • dag_code(dag_id) Retrieves the source code for a specific DAG. Output: dag_id, file_token, source_code

  • list_event_logs(dag_id=None, task_id=None, run_id=None, limit=20, offset=0) Lists event log entries with optional filtering. Optimized limit: Default is 20 for better performance while maintaining good coverage. Output: event_logs, total_entries, limit, offset, has_more_pages, next_offset, pagination_info

  • get_event_log(event_log_id) Retrieves a specific event log entry by ID. Output: event_log_id, when, event, dag_id, task_id, run_id, etc.

  • all_dag_event_summary() Retrieves event count summary for all DAGs. Improved limit: Uses limit=1000 for DAG retrieval to avoid missing DAGs in large environments. Output: dag_summaries, total_dags, total_events

  • list_import_errors(limit=20, offset=0) Lists import errors with optional filtering. Optimized limit: Default is 20 for better performance while maintaining good coverage. Output: import_errors, total_entries, limit, offset, has_more_pages, next_offset, pagination_info

  • get_import_error(import_error_id) Retrieves a specific import error by ID. Output: import_error_id, filename, stacktrace, timestamp

  • all_dag_import_summary() Retrieves import error summary for all DAGs. Output: import_summaries, total_errors, affected_files

  • dag_run_duration(dag_id, limit=50) Retrieves run duration statistics for a specific DAG. Improved limit: Default increased from 10 to 50 for better statistical analysis. Output: dag_id, runs, duration analysis, success/failure stats

  • dag_task_duration(dag_id, run_id=None) Retrieves task duration information for a specific DAG run. Output: dag_id, run_id, tasks, individual task performance

  • dag_calendar(dag_id, start_date=None, end_date=None, limit=20) Retrieves calendar/schedule information for a specific DAG. Configurable limit: Default is 20, can be increased up to 1000 for bulk analysis. Output: dag_id, schedule_interval, runs, upcoming executions

Example Queries

Go to Example Queries

Prompt Template

The package exposes a tool get_prompt_template that returns either the entire template, a specific section, or just the headings. Three MCP prompts (prompt_template_full, prompt_template_headings, prompt_template_section) are also registered for discovery.

MCP Prompts

For easier discoverability in MCP clients (so prompts/list is not empty), the server now registers three prompts:

prompt_template_full – returns the full canonical template • prompt_template_headings – returns only the section headings • prompt_template_section – takes a section argument (number or keyword) and returns that section

You can still use the get_prompt_template tool for programmatic access or when you prefer tool invocation over prompt retrieval.

Single canonical English prompt template guides safe and efficient tool selection.

Files:• Packaged: src/mcp_airflow_api/prompt_template.md (distributed with PyPI) • (Optional workspace root copy PROMPT_TEMPLATE.md may exist for editing; packaged copy is the one loaded at runtime.)

Retrieve dynamically via MCP tool:• get_prompt_template() – full template • get_prompt_template("tool map") – only the tool mapping section • get_prompt_template("3") – section 3 (tool map) • get_prompt_template(mode="headings") – list all section headings

Policy: Only English is stored; the LLM always uses English instructions for internal reasoning, regardless of the user's query language. User responses may be generated in multiple languages as needed.

Main Tool Files

  • MCP tool definitions: src/mcp_airflow_api/airflow_api.py
  • Utility functions: src/mcp_airflow_api/functions.py

Pagination Guide for Large Airflow Environments

Understanding DAG Pagination

The list_dags() function now supports pagination to handle large Airflow environments efficiently:

Default Behavior:

  • Returns first 100 DAGs by default
  • Includes pagination metadata in response

Pagination Response Structure:

{
  "dags": [...],
  "total_entries": 1500,
  "limit": 100,
  "offset": 0,
  "returned_count": 100,
  "has_more_pages": true,
  "next_offset": 100,
  "pagination_info": {
    "current_page": 1,
    "total_pages": 15,
    "remaining_count": 1400
  }
}

Pagination Strategies

🔍 Exploratory (Recommended for LLMs):

1. list_dags() → Check first 20 DAGs
2. Use has_more_pages to determine if more exist
3. list_dags(limit=20, offset=20) → Get next 20
4. Continue as needed

📊 Complete Analysis:

→ Automatically fetches ALL DAGs regardless of count

⚡ Quick Large Queries:

list_dags(limit=500)
→ Get up to 500 DAGs in one call

Best Practices

  • Small Airflow (< 50 DAGs): Use default list_dags()
  • Medium Airflow (50-500 DAGs): Use list_dags(limit=100) or list_dags(limit=200)
  • Memory-conscious: Use default limits (20) with manual pagination

Logging & Observability

  • Structured logs for all tool invocations and HTTP requests
  • Control log level via environment variable (AIRFLOW_LOG_LEVEL) or CLI flag (--log-level)
  • Supported levels: DEBUG, INFO, WARNING, ERROR, CRITICAL

Roadmap

This project starts with a minimal set of essential Airflow management tools. Many more useful features and tools for Airflow cluster operations will be added soon, including advanced monitoring, DAG/task analytics, scheduling controls, and more. Contributions and suggestions are welcome!

Additional Links

Testing

This project includes comprehensive tests for the prompt template functionality.

Running Tests

# Install development dependencies
uv sync

# Run all tests
uv run pytest

# Run tests with verbose output
uv run pytest -v

# Run specific test file
uv run pytest tests/test_prompt_template.py -v

More ScreenShoots

ScreenShot-001

ScreenShot-002

ScreenShot-003

ScreenShot-004

ScreenShot-005

ScreenShot-006

ScreenShot-007

ScreenShot-008

ScreenShot-010

License

This project is licensed under the MIT License.

MCP Server · Populars

MCP Server · New

    apify

    mcp.apify.com

    Apify MCP server (tools for web scraping, data extraction, and automation)

    Community apify
    ergut

    MCP server for LogSeq

    MCP server to interact with LogSeq via its Local HTTP API - enabling AI assistants like Claude to seamlessly read, write, and manage your LogSeq graph.

    Community ergut
    call518

    MCP PostgreSQL Operations Server

    Professional, read-only MCP server for PostgreSQL ops/monitoring: performance insights using pg_stat_statements & pg_stat_monitor, plus structure/size/config visibility.

    Community call518
    pulsemcp

    Hatchbox MCP Server

    MCP (Model Context Protocol) Servers authored and maintained by the PulseMCP team. We build reliable servers thoughtfully designed specifically for MCP Client-powered workflows.

    Community pulsemcp
    snyk

    Getting started with the Snyk CLI

    Snyk CLI scans and monitors your projects for security vulnerabilities.

    Community snyk