disler

Aider MCP Server - Experimental

Community disler
Updated

Model context protocol server for offloading ai coding work to Aider

Aider MCP Server - Experimental

Model context protocol server for offloading AI coding work to Aider, enhancing development efficiency and flexibility.

Overview

This server allows Claude Code to offload AI coding tasks to Aider, the best open source AI coding assistant. By delegating certain coding tasks to Aider, we can reduce costs, gain control over our coding model and operate Claude Code in a more orchestrative way to review and revise code.

Setup

  1. Clone the repository:
git clone https://github.com/disler/aider-mcp-server.git
  1. Install dependencies:
uv sync
  1. Create your environment file:
cp .env.sample .env
  1. Configure your API keys in the .env file (or use the mcpServers "env" section) to have the api key needed for the model you want to use in aider:
GEMINI_API_KEY=your_gemini_api_key_here
OPENAI_API_KEY=your_openai_api_key_here
ANTHROPIC_API_KEY=your_anthropic_api_key_here
...see .env.sample for more
  1. Copy and fill out the the .mcp.json into the root of your project and update the --directory to point to this project's root directory and the --current-working-dir to point to the root of your project.
{
  "mcpServers": {
    "aider-mcp-server": {
      "type": "stdio",
      "command": "uv",
      "args": [
        "--directory",
        "<path to this project>",
        "run",
        "aider-mcp-server",
        "--editor-model",
        "gpt-4o",
        "--current-working-dir",
        "<path to your project>"
      ],
      "env": {
        "GEMINI_API_KEY": "<your gemini api key>",
        "OPENAI_API_KEY": "<your openai api key>",
        "ANTHROPIC_API_KEY": "<your anthropic api key>",
        ...see .env.sample for more
      }
    }
  }
}
uv run aider-mcp-server

Testing

To run all tests:

uv run pytest

To run specific tests:

# Test listing models
uv run pytest src/aider_mcp_server/tests/atoms/tools/test_aider_list_models.py

# Test AI coding
uv run pytest src/aider_mcp_server/tests/atoms/tools/test_aider_ai_code.py

Note: The AI coding tests require a valid API key for the Gemini model. Make sure to set it in your .env file before running the tests.

Add this MCP server to Claude Code

Add with gemini-2.5-pro-exp-03-25

claude mcp add aider-mcp-server -s local \
  -- \
  uv --directory "<path to the aider mcp server project>" \
  run aider-mcp-server \
  --editor-model "gemini/gemini-2.5-pro-exp-03-25" \
  --current-working-dir "<path to your project>"

Add with gemini-2.5-pro-preview-03-25

claude mcp add aider-mcp-server -s local \
  -- \
  uv --directory "<path to the aider mcp server project>" \
  run aider-mcp-server \
  --editor-model "gemini/gemini-2.5-pro-preview-03-25" \
  --current-working-dir "<path to your project>"

Add with quasar-alpha

claude mcp add aider-mcp-server -s local \
  -- \
  uv --directory "<path to the aider mcp server project>" \
  run aider-mcp-server \
  --editor-model "openrouter/openrouter/quasar-alpha" \
  --current-working-dir "<path to your project>"

Add with llama4-maverick-instruct-basic

claude mcp add aider-mcp-server -s local \
  -- \
  uv --directory "<path to the aider mcp server project>" \
  run aider-mcp-server \
  --editor-model "fireworks_ai/accounts/fireworks/models/llama4-maverick-instruct-basic" \
  --current-working-dir "<path to your project>"

Usage

This MCP server provides the following functionalities:

  1. Offload AI coding tasks to Aider:

    • Takes a prompt and file paths
    • Uses Aider to implement the requested changes
    • Returns success or failure
  2. List available models:

    • Provides a list of models matching a substring
    • Useful for discovering supported models

Available Tools

This MCP server exposes the following tools:

1. aider_ai_code

This tool allows you to run Aider to perform AI coding tasks based on a provided prompt and specified files.

Parameters:

  • ai_coding_prompt (string, required): The natural language instruction for the AI coding task.
  • relative_editable_files (list of strings, required): A list of file paths (relative to the current_working_dir) that Aider is allowed to modify. If a file doesn't exist, it will be created.
  • relative_readonly_files (list of strings, optional): A list of file paths (relative to the current_working_dir) that Aider can read for context but cannot modify. Defaults to an empty list [].
  • model (string, optional): The primary AI model Aider should use for generating code. Defaults to "gemini/gemini-2.5-pro-exp-03-25". You can use the list_models tool to find other available models.
  • editor_model (string, optional): The AI model Aider should use for editing/refining code, particularly when using architect mode. If not provided, the primary model might be used depending on Aider's internal logic. Defaults to None.

Example Usage (within an MCP request):

{
  "name": "aider_ai_code",
  "parameters": {
    "ai_coding_prompt": "Refactor the calculate_sum function in calculator.py to handle potential TypeError exceptions.",
    "relative_editable_files": ["src/calculator.py"],
    "relative_readonly_files": ["docs/requirements.txt"],
    "model": "openai/gpt-4o"
  }
}

Returns:

  • A simple string indicating the outcome: "success" or "failure".

2. list_models

This tool lists available AI models supported by Aider that match a given substring.

Parameters:

  • substring (string, required): The substring to search for within the names of available models.

Example Usage (within an MCP request):

{
  "name": "list_models",
  "parameters": {
    "substring": "gemini"
  }
}

Returns:

  • A list of model name strings that match the provided substring. Example: ["gemini/gemini-1.5-flash", "gemini/gemini-1.5-pro", "gemini/gemini-pro"]

Architecture

The server is structured as follows:

  • Server layer: Handles MCP protocol communication
  • Atoms layer: Individual, pure functional components
    • Tools: Specific capabilities (AI coding, listing models)
    • Utils: Constants and helper functions
    • Data Types: Type definitions using Pydantic

All components are thoroughly tested for reliability.

Codebase Structure

The project is organized into the following main directories and files:

.
├── ai_docs                   # Documentation related to AI models and examples
│   ├── just-prompt-example-mcp-server.xml
│   └── programmable-aider-documentation.md
├── pyproject.toml            # Project metadata and dependencies
├── README.md                 # This file
├── specs                     # Specification documents
│   └── init-aider-mcp-exp.md
├── src                       # Source code directory
│   └── aider_mcp_server      # Main package for the server
│       ├── __init__.py       # Package initializer
│       ├── __main__.py       # Main entry point for the server executable
│       ├── atoms             # Core, reusable components (pure functions)
│       │   ├── __init__.py
│       │   ├── data_types.py # Pydantic models for data structures
│       │   ├── logging.py    # Custom logging setup
│       │   ├── tools         # Individual tool implementations
│       │   │   ├── __init__.py
│       │   │   ├── aider_ai_code.py # Logic for the aider_ai_code tool
│       │   │   └── aider_list_models.py # Logic for the list_models tool
│       │   └── utils.py      # Utility functions and constants (like default models)
│       ├── server.py         # MCP server logic, tool registration, request handling
│       └── tests             # Unit and integration tests
│           ├── __init__.py
│           └── atoms         # Tests for the atoms layer
│               ├── __init__.py
│               ├── test_logging.py # Tests for logging
│               └── tools     # Tests for the tools
│                   ├── __init__.py
│                   ├── test_aider_ai_code.py # Tests for AI coding tool
│                   └── test_aider_list_models.py # Tests for model listing tool
  • src/aider_mcp_server: Contains the main application code.
    • atoms: Holds the fundamental building blocks. These are designed to be pure functions or simple classes with minimal dependencies.
      • tools: Each file here implements the core logic for a specific MCP tool (aider_ai_code, list_models).
      • utils.py: Contains shared constants like default model names.
      • data_types.py: Defines Pydantic models for request/response structures, ensuring data validation.
      • logging.py: Sets up a consistent logging format for console and file output.
    • server.py: Orchestrates the MCP server. It initializes the server, registers the tools defined in the atoms/tools directory, handles incoming requests, routes them to the appropriate tool logic, and sends back responses according to the MCP protocol.
    • __main__.py: Provides the command-line interface entry point (aider-mcp-server), parsing arguments like --editor-model and starting the server defined in server.py.
    • tests: Contains tests mirroring the structure of the src directory, ensuring that each component (especially atoms) works as expected.

MCP Server · Populars

MCP Server · New

    chatmcp

    mcpso

    directory for Awesome MCP Servers

    Community chatmcp
    TBXark

    MCP Proxy Server

    An MCP proxy server that aggregates and serves multiple MCP resource servers through a single HTTP server.

    Community TBXark
    ttommyth

    interactive-mcp

    Ask users questions from your LLM! interactive-mcp: Local, cross-platform MCP server for interactive prompts, chat & notifications.

    Community ttommyth
    lpigeon

    ros-mcp-server

    The ROS MCP Server is designed to support robots in performing complex tasks and adapting effectively to various environments by providing a set of functions that transform natural language commands, entered by a user through an LLM, into ROS commands for robot control.

    Community lpigeon
    emicklei

    melrose-mcp

    interactive programming of melodies, producing MIDI

    Community emicklei