Decompose
Stop prompting. Start decomposing.
The missing cognitive primitive for AI agents. Decompose turns any text into classified, structured semantic units — instantly. No LLM. No setup. One function call.
Before: your agent reads this
The contractor shall provide all materials per ASTM C150-20. Maximum load
shall not exceed 500 psf per ASCE 7-22. Notice to proceed within 14 calendar
days of contract execution. Retainage of 10% applies to all payments.
For general background, the project is located in Denver, CO...
After: your agent reads this
[
{
"text": "The contractor shall provide all materials per ASTM C150-20.",
"authority": "mandatory",
"risk": "compliance",
"type": "requirement",
"irreducible": true,
"attention": 8.0,
"entities": ["ASTM C150-20"]
},
{
"text": "Maximum load shall not exceed 500 psf per ASCE 7-22.",
"authority": "prohibitive",
"risk": "safety_critical",
"type": "constraint",
"irreducible": true,
"attention": 10.0,
"entities": ["ASCE 7-22"]
}
]
Every unit classified. Every standard extracted. Every risk scored. Your agent knows what matters.
Install
pip install decompose-mcp
Use as MCP Server
Add to your agent's MCP config (Claude Code, Cursor, Windsurf, etc.):
{
"mcpServers": {
"decompose": {
"command": "uvx",
"args": ["decompose-mcp", "--serve"]
}
}
}
Your agent gets two tools:
decompose_text— decompose any textdecompose_url— fetch a URL and decompose its content
OpenClaw
Install the skill from ClawHub or configure directly:
{
"mcpServers": {
"decompose": {
"command": "python3",
"args": ["-m", "decompose", "--serve"]
}
}
}
Or install the skill: clawdhub install decompose-mcp
Use as CLI
# Pipe text
cat spec.txt | decompose --pretty
# Inline
decompose --text "The contractor shall provide all materials per ASTM C150-20."
# Compact output (smaller JSON)
cat document.md | decompose --compact
Use as Library
from decompose import decompose
result = decompose("The contractor shall provide all materials per ASTM C150-20.")
for unit in result["units"]:
print(f"[{unit['authority']}] [{unit['risk']}] {unit['text'][:60]}...")
What Each Field Means
| Field | Values | What It Tells Your Agent |
|---|---|---|
authority |
mandatory, prohibitive, directive, permissive, conditional, informational | Is this a hard requirement or background? |
risk |
safety_critical, security, compliance, financial, contractual, advisory, informational | How much does this matter? |
type |
requirement, definition, reference, constraint, narrative, data | What kind of content is this? |
irreducible |
true/false | Must this be preserved verbatim? |
attention |
0.0 - 10.0 | How much compute should the agent spend here? |
entities |
standards, codes, regulations | What formal references are cited? |
actionable |
true/false | Does someone need to do something? |
Why No LLM?
Decompose runs on pure regex and heuristics. No Ollama, no API key, no GPU, no inference cost.
This is intentional:
- Fast: <500ms for a 50-page spec
- Deterministic: Same input always produces same output
- Offline: Works air-gapped, on a plane, on CI
- Composable: Your agent's LLM reasons over the structured output — decompose handles the preprocessing
The LLM is what your agent uses. Decompose makes whatever model you're running work better.
Built by Echology
Decompose is extracted from AECai, a document intelligence platform for Architecture, Engineering, and Construction firms. The classification patterns, entity extraction, and irreducibility detection are battle-tested against thousands of real AEC documents — specs, contracts, RFIs, inspection reports, pay applications.
Blog
- When Regex Beats an LLM — Decompose classifies the MCP spec in 3.78ms
- Why Your Agent Needs a Cognitive Primitive — attention scoring, irreducibility, and routing
- What "Simulation-Aware" Actually Means — the architecture behind AECai
License: Proprietary — Copyright (c) 2025-2026 Echology, Inc.
Philosophy: All intelligence begins with decomposition.