GLIN PROFANITY
ML-Powered Profanity Detection for the Modern Web
π¦ Packages
This monorepo maintains the following packages:
| Package | Version | Description |
|---|---|---|
| glin-profanity | Core profanity filter for JavaScript/TypeScript | |
| glin-profanity | Core profanity filter for Python | |
| glin-profanity-mcp | MCP server for AI assistants (Claude, Cursor, etc.) | |
| openclaw-profanity | Plugin for OpenClaw/Moltbot AI agents |
Why Glin Profanity?
Most profanity filters are trivially bypassed. Users type f*ck, sh1t, or fΥ½ck (with Cyrillic characters) and walk right through. Glin Profanity doesn't just check against a word listβit understands evasion tactics.
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β GLIN PROFANITY v3 β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β Input Text βββΊ Unicode βββΊ Leetspeak βββΊ Dictionary βββΊ ML β
β Normalization Detection Matching Checkβ
β (homoglyphs) (f4ckβfuck) (23 langs) (opt) β
β β
β "fΥ½ck" βββΊ "fuck" βββΊ "fuck" βββΊ MATCH βββΊ β β
β β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Performance Benchmarks
Tested on Node.js 20, M1 MacBook Pro, single-threaded:
| Operation | Glin Profanity | bad-words | leo-profanity | obscenity |
|---|---|---|---|---|
| Simple check | 21M ops/sec | 890K ops/sec | 1.2M ops/sec | 650K ops/sec |
| With leetspeak | 8.5M ops/sec | N/A | N/A | N/A |
| Multi-language (3) | 18M ops/sec | N/A | 400K ops/sec | N/A |
| Unicode normalization | 15M ops/sec | N/A | N/A | N/A |
Feature Comparison
| Feature | Glin Profanity | bad-words | leo-profanity | obscenity |
|---|---|---|---|---|
Leetspeak detection (f4ck, sh1t) |
Yes | No | No | Partial |
| Unicode homoglyph detection | Yes | No | No | No |
| ML toxicity detection | Yes (TensorFlow.js) | No | No | No |
| Multi-language support | 23 languages | English only | 14 languages | English only |
| Result caching (LRU) | Yes | No | No | No |
| Severity levels | Yes | No | No | No |
| React hook | Yes | No | No | No |
| Python package | Yes | No | No | No |
| TypeScript types | Full | Partial | Partial | Full |
| Bundle size (minified) | 12KB + dictionaries | 8KB | 15KB | 6KB |
| Active maintenance | Yes | Limited | Limited | Limited |
Installation
JavaScript/TypeScript
npm install glin-profanity
Python
pip install glin-profanity
Quick Start
JavaScript
import { checkProfanity, Filter } from 'glin-profanity';
// Simple check
const result = checkProfanity("This is f4ck1ng bad", {
detectLeetspeak: true,
languages: ['english']
});
result.containsProfanity // true
result.profaneWords // ['fucking']
// With replacement
const filter = new Filter({
replaceWith: '***',
detectLeetspeak: true
});
filter.checkProfanity("sh1t happens").processedText // "*** happens"
Python
from glin_profanity import Filter
filter = Filter({"languages": ["english"], "replace_with": "***"})
filter.is_profane("damn this") # True
filter.check_profanity("damn this") # Full result object
React
import { useProfanityChecker } from 'glin-profanity';
function ChatInput() {
const { result, checkText } = useProfanityChecker({
detectLeetspeak: true
});
return (
<input onChange={(e) => checkText(e.target.value)} />
{result?.containsProfanity && <span>Clean up your language</span>}
);
}
Architecture
flowchart LR
subgraph Input
A[Raw Text]
end
subgraph Processing
B[Unicode Normalizer]
C[Leetspeak Decoder]
D[Word Tokenizer]
end
subgraph Detection
E[Dictionary Matcher]
F[Fuzzy Matcher]
G[ML Toxicity Model]
end
subgraph Output
H[Result Object]
end
A --> B --> C --> D
D --> E --> H
D --> F --> H
D -.->|Optional| G -.-> H
Detection Capabilities
Leetspeak Detection
const filter = new Filter({
detectLeetspeak: true,
leetspeakLevel: 'aggressive' // basic | moderate | aggressive
});
filter.isProfane('f4ck'); // true
filter.isProfane('5h1t'); // true
filter.isProfane('@$$'); // true
filter.isProfane('ph.u" "ck'); // true (aggressive mode)
Unicode Homoglyph Detection
const filter = new Filter({ normalizeUnicode: true });
filter.isProfane('fΥ½ck'); // true (Armenian 'Υ½' β 'u')
filter.isProfane('shΡt'); // true (Cyrillic 'Ρ' β 'i')
filter.isProfane('Ζuck'); // true (Latin 'Ζ' β 'f')
ML-Powered Detection
import { loadToxicityModel, checkToxicity } from 'glin-profanity/ml';
await loadToxicityModel({ threshold: 0.9 });
const result = await checkToxicity("You're the worst player ever");
// { toxic: true, categories: { toxicity: 0.92, insult: 0.87, ... } }
Supported Languages
23 languages with curated dictionaries:
| Arabic | Chinese | Czech | Danish |
| Dutch | English | Esperanto | Finnish |
| French | German | Hindi | Hungarian |
| Italian | Japanese | Korean | Norwegian |
| Persian | Polish | Portuguese | Russian |
| Spanish | Swedish | Thai | Turkish |
Documentation
| Document | Description |
|---|---|
| Getting Started | Installation and basic usage |
| API Reference | Complete API documentation |
| Framework Examples | React, Vue, Angular, Express, Next.js |
| Advanced Features | Leetspeak, Unicode, ML, caching |
| ML Guide | TensorFlow.js integration |
| Changelog | Version history |
Local Testing Interface
Run the interactive playground locally to test profanity detection:
# Clone the repo
git clone https://github.com/GLINCKER/glin-profanity.git
cd glin-profanity/packages/js
# Install dependencies
npm install
# Start the local testing server
npm run dev:playground
Open http://localhost:4000 to access the testing interface with:
- Real-time profanity detection
- Toggle leetspeak, Unicode normalization, ML detection
- Multi-language selection
- Visual results with severity indicators
Use Cases
| Application | How Glin Profanity Helps |
|---|---|
| Chat platforms | Real-time message filtering with React hook |
| Gaming | Detect obfuscated profanity in player names/chat |
| Social media | Scale moderation with ML-powered detection |
| Education | Maintain safe learning environments |
| Enterprise | Filter internal communications |
| AI/ML pipelines | Clean training data before model ingestion |
MCP Server for AI Assistants
Glin Profanity includes an MCP (Model Context Protocol) server that enables AI assistants like Claude Desktop, Cursor, Windsurf, and other MCP-compatible tools to use profanity detection as a native tool.
Quick Setup
Claude Desktop (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"glin-profanity": {
"command": "npx",
"args": ["-y", "glin-profanity-mcp"]
}
}
}
Cursor (.cursor/mcp.json):
{
"mcpServers": {
"glin-profanity": {
"command": "npx",
"args": ["-y", "glin-profanity-mcp"]
}
}
}
Available Tools (19)
| Tool | Description |
|---|---|
check_profanity |
Check text for profanity with detailed results |
censor_text |
Censor profanity with configurable replacement |
analyze_context |
Context-aware analysis with domain whitelists |
batch_check |
Check multiple texts in one operation |
validate_content |
Content validation with safety scoring (0-100) |
detect_obfuscation |
Detect leetspeak and Unicode tricks |
get_supported_languages |
List all 24 supported languages |
explain_match |
Explain why text was flagged with reasoning |
suggest_alternatives |
Suggest clean alternatives for profane content |
analyze_corpus |
Analyze up to 500 texts for moderation stats |
compare_strictness |
Compare results across strictness levels |
create_regex_pattern |
Generate regex patterns for custom detection |
track_user_message |
Track user messages for repeat offender detection |
get_user_profile |
Get moderation profile for a specific user |
get_high_risk_users |
List users with high violation rates |
reset_user_profile |
Reset a user's moderation history |
stream_check |
Real-time streaming profanity check |
stream_batch |
Stream multiple texts with live results |
get_stream_stats |
Get streaming session statistics |
Plus 4 workflow prompts and 5 reference resources for guided AI interactions.
Example Prompts for AI Assistants
"Check this user comment for profanity using glin-profanity"
"Validate this blog post content with high strictness"
"Batch check these 50 messages for any inappropriate content"
"Analyze this medical text with the medical domain context"
See the full MCP documentation for setup instructions and examples.
Roadmap
See our ROADMAP.md for planned features including:
- Streaming support for real-time chat
- OpenAI function calling integration
- Image OCR for profanity in images
- Edge deployment (Cloudflare Workers, Vercel Edge)
- More framework integrations
License
MIT License - free for personal and commercial use.
Enterprise licensing with SLA and support available from GLINCKER.
Contributing
See CONTRIBUTING.md for guidelines. We welcome:
- Bug reports and fixes
- New language dictionaries
- Performance improvements
- Documentation updates