MCP Project with Gemini Integration

This project implements a Model Control Protocol (MCP) server with Google Gemini LLM integration, providing a flexible framework for building AI-powered applications.

Project Structure

.
├── .venv/                   # Virtual environment (gitignored)
├── client-server/           # MCP client and server implementation
│   ├── client-sse.py        # SSE client
│   ├── client-stdio.py      # stdio client
│   └── server.py            # MCP server
├── gemini-llm-integration/  # Gemini LLM integration
│   ├── client-simple.py     # Simple Gemini client
│   ├── server.py            # Gemini server implementation
│   └── data/                # Knowledge base and data files
├── .env                     # Environment variables
├── .env.example            # Example environment variables
├── requirements.txt         # Project dependencies
└── test_gemini.py          # Test script for Gemini API

Prerequisites

  • Python 3.8+
  • UV package manager (pip install uv)
  • Google Gemini API key (for Gemini integration)

Setup

  1. Clone the repository and navigate to the project directory.

  2. Create and activate a virtual environment:

    uv venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
  3. Install dependencies:

    uv pip install -r requirements.txt
    
  4. Copy .env.example to .env and update with your API keys:

    cp .env.example .env
    # Edit .env with your API keys
    

Running the Project

MCP Server

  1. Start the MCP server:

    cd client-server
    python server.py
    
  2. In a separate terminal, run a client:

    # For SSE client
    python client-sse.py
    
    # For stdio client
    python client-stdio.py
    

Gemini Integration

  1. Start the Gemini server:

    cd gemini-llm-integration
    python server.py
    
  2. Run the Gemini client:

    python client-simple.py
    

Development

  • Format code:

    black .
    isort .
    
  • Run tests:

    pytest
    
  • Type checking:

    mypy .
    

License

[Specify your license here]

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a new Pull Request

MCP Server · Populars

MCP Server · New