kzmshx

frontmatter-mcp

Community kzmshx
Updated

MCP server for querying Markdown frontmatter with DuckDB SQL

frontmatter-mcp

An MCP server for querying Markdown frontmatter with DuckDB SQL.

Configuration

{
  "mcpServers": {
    "frontmatter": {
      "command": "uvx",
      "args": ["frontmatter-mcp"],
      "env": {
        "FRONTMATTER_BASE_DIR": "/path/to/markdown/directory"
      }
    }
  }
}

With Semantic Search

To enable semantic search, use the [semantic] extras:

{
  "mcpServers": {
    "frontmatter": {
      "command": "uvx",
      "args": ["--from", "frontmatter-mcp[semantic]", "frontmatter-mcp"],
      "env": {
        "FRONTMATTER_BASE_DIR": "/path/to/markdown/directory",
        "FRONTMATTER_ENABLE_SEMANTIC": "true"
      }
    }
  }
}

Installation (Optional)

If you prefer to install globally:

pip install frontmatter-mcp
# or
uv tool install frontmatter-mcp

Tools

query_inspect

Get schema information from frontmatter across files.

Parameter Type Description
glob string Glob pattern relative to base directory

Example:

// Input
{ "glob": "**/*.md" }

// Output
{
  "file_count": 186,
  "schema": {
    "date": { "type": "string", "count": 180, "nullable": true },
    "tags": { "type": "array", "count": 150, "nullable": true }
  }
}

// Output (with semantic search ready)
{
  "file_count": 186,
  "schema": {
    "date": { "type": "string", "count": 180, "nullable": true },
    "tags": { "type": "array", "count": 150, "nullable": true },
    "embedding": { "type": "FLOAT[256]", "nullable": false }
  }
}

query

Query frontmatter data with DuckDB SQL.

Parameter Type Description
glob string Glob pattern relative to base directory
sql string DuckDB SQL query referencing files table

Example:

// Input
{
  "glob": "**/*.md",
  "sql": "SELECT path, date FROM files WHERE date >= '2025-11-01' ORDER BY date DESC"
}

// Output
{
  "columns": ["path", "date"],
  "row_count": 24,
  "results": [
    {"path": "daily/2025-11-28.md", "date": "2025-11-28"},
    {"path": "daily/2025-11-27.md", "date": "2025-11-27"}
  ]
}

update

Update frontmatter properties in a single file.

Parameter Type Description
path string File path relative to base directory
set object Properties to add or overwrite
unset string[] Property names to remove

Example:

// Input
{ "path": "notes/idea.md", "set": {"status": "published"} }

// Output
{ "path": "notes/idea.md", "frontmatter": {"title": "Idea", "status": "published"} }

batch_update

Update frontmatter properties in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
set object Properties to add or overwrite
unset string[] Property names to remove

Example:

// Input
{ "glob": "drafts/*.md", "set": {"status": "review"} }

// Output
{ "updated_count": 5, "updated_files": ["drafts/a.md", "drafts/b.md", ...] }

batch_array_add

Add a value to an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property
value any Value to add
allow_duplicates bool Allow duplicate values (default: false)

Example:

// Input
{ "glob": "**/*.md", "property": "tags", "value": "reviewed" }

// Output
{ "updated_count": 42, "updated_files": ["a.md", "b.md", ...] }

batch_array_remove

Remove a value from an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property
value any Value to remove

Example:

// Input
{ "glob": "**/*.md", "property": "tags", "value": "draft" }

// Output
{ "updated_count": 15, "updated_files": ["a.md", "b.md", ...] }

batch_array_replace

Replace a value in an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property
old_value any Value to replace
new_value any New value

Example:

// Input
{ "glob": "**/*.md", "property": "tags", "old_value": "draft", "new_value": "review" }

// Output
{ "updated_count": 10, "updated_files": ["a.md", "b.md", ...] }

batch_array_sort

Sort an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property
reverse bool Sort in descending order (default: false)

Example:

// Input
{ "glob": "**/*.md", "property": "tags" }

// Output
{ "updated_count": 20, "updated_files": ["a.md", "b.md", ...] }

batch_array_unique

Remove duplicate values from an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property

Example:

// Input
{ "glob": "**/*.md", "property": "tags" }

// Output
{ "updated_count": 5, "updated_files": ["a.md", "b.md", ...] }

index_status

Get the status of the semantic search index.

This tool is only available when FRONTMATTER_ENABLE_SEMANTIC=true.

Example:

// Output (not started)
{ "state": "idle" }

// Output (indexing in progress)
{ "state": "indexing" }

// Output (ready)
{ "state": "ready" }

index_refresh

Refresh the semantic search index (differential update).

This tool is only available when FRONTMATTER_ENABLE_SEMANTIC=true.

Example:

// Output
{ "state": "indexing", "message": "Indexing started", "target_count": 665 }

// Output (when already indexing)
{ "state": "indexing", "message": "Indexing already in progress" }

Technical Notes

All Values Are Strings

All frontmatter values are passed to DuckDB as strings. Use TRY_CAST in SQL for type conversion when needed.

SELECT * FROM files
WHERE TRY_CAST(date AS DATE) >= '2025-11-01'

Arrays Are JSON Strings

Arrays like tags: [ai, python] are stored as JSON strings '["ai", "python"]'. Use from_json() and UNNEST to expand them.

SELECT path, tag
FROM files, UNNEST(from_json(tags, '[""]')) AS t(tag)
WHERE tag = 'ai'

Templater Expression Support

Files containing Obsidian Templater expressions (e.g., <% tp.date.now("YYYY-MM-DD") %>) are handled gracefully. These expressions are treated as strings and naturally excluded by date filtering.

Semantic Search

When semantic search is enabled, you can use the embed() function and embedding column in SQL queries. After running index_refresh, the markdown body content is indexed as vectors.

-- Find semantically similar documents
SELECT path, 1 - array_cosine_distance(embedding, embed('feeling better')) as score
FROM files
ORDER BY score DESC
LIMIT 10

-- Combine with frontmatter filters
SELECT path, date, 1 - array_cosine_distance(embedding, embed('motivation')) as score
FROM files
WHERE date >= '2025-11-01'
ORDER BY score DESC
LIMIT 10

Environment variables:

Variable Default Description
FRONTMATTER_BASE_DIR (required) Base directory for files
FRONTMATTER_ENABLE_SEMANTIC false Enable semantic search
FRONTMATTER_EMBEDDING_MODEL cl-nagoya/ruri-v3-30m Embedding model name
FRONTMATTER_CACHE_DIR FRONTMATTER_BASE_DIR/.frontmatter-mcp Cache directory for embeddings

License

MIT

MCP Server · Populars

MCP Server · New