MCP-Mirror

DigitalOcean MCP Server

Community MCP-Mirror
Updated

Mirror of https://github.com/amranu/digitalocean-mcp

DigitalOcean MCP Server

A Model Context Protocol (MCP) server that provides comprehensive access to all DigitalOcean API endpoints, dynamically extracted from their OpenAPI specification. This server enables AI assistants to interact with your DigitalOcean resources programmatically.

Features

  • Complete API Coverage: Access to 471+ DigitalOcean API endpoints across all services
  • Dynamic Endpoint Discovery: Automatically extracts and indexes endpoints from DigitalOcean's OpenAPI spec
  • Intelligent Search: Find endpoints by operation ID, summary, description, or tags
  • Detailed Documentation: Get parameter details, descriptions, and requirements for each endpoint
  • Authenticated API Calls: Execute API calls through the MCP server with proper authentication
  • Tag-based Organization: Browse endpoints by category (Droplets, Load Balancers, Databases, etc.)
  • Auto-configuration: Automatically configures from DIGITALOCEAN_API_TOKEN environment variable

Quick Start

Installation

npm install
npm run build

Environment Setup

Create a .env file or set the environment variable:

export DIGITALOCEAN_API_TOKEN="your-digitalocean-api-token"

Running the Server

npm start

Or for development with auto-reload:

npm run dev

MCP Tools

The server provides these MCP tools for AI assistants:

1. configure_digitalocean_api

Set up API credentials (optional if using environment variable)

2. list_endpoints

List all available endpoints with optional filtering by tag

3. search_endpoints

Search endpoints by query string

4. get_endpoint_details

Get detailed information about a specific endpoint

5. call_digitalocean_api

Execute API calls with authentication

6. list_tags

Show all available endpoint categories

Usage Examples

Basic Droplet Management

// List all droplets
{
  "tool": "call_digitalocean_api",
  "arguments": {
    "operationId": "droplets_list"
  }
}

// Create a new droplet
{
  "tool": "call_digitalocean_api",
  "arguments": {
    "operationId": "droplets_create",
    "parameters": {
      "name": "example-droplet",
      "region": "nyc3",
      "size": "s-1vcpu-1gb",
      "image": "ubuntu-20-04-x64"
    }
  }
}

Discovery and Search

// Find all droplet-related endpoints
{
  "tool": "search_endpoints",
  "arguments": {
    "query": "droplet",
    "limit": 10
  }
}

// List endpoints by category
{
  "tool": "list_endpoints",
  "arguments": {
    "tag": "Load Balancers",
    "limit": 5
  }
}

// Get detailed endpoint information
{
  "tool": "get_endpoint_details",
  "arguments": {
    "operationId": "droplets_list"
  }
}

Architecture

  • extract_endpoints.py: Python script that parses the OpenAPI spec and extracts endpoint definitions
  • src/endpoints.ts: TypeScript module for loading and searching endpoint data
  • src/api-client.ts: HTTP client for making authenticated API calls
  • src/index.ts: Main MCP server implementation

API Coverage

The server provides access to all DigitalOcean API endpoints across categories including:

  • 1-Click Applications
  • Account Management
  • Billing
  • Block Storage Volumes
  • CDN Endpoints
  • Certificates
  • Container Registry
  • Databases
  • Domains and DNS
  • Droplets
  • Firewalls
  • Floating IPs
  • Images
  • Kubernetes
  • Load Balancers
  • Monitoring
  • Projects
  • Reserved IPs
  • Snapshots
  • SSH Keys
  • Tags
  • VPCs
  • And more...

Development

To regenerate the endpoint data:

python extract_endpoints.py

To rebuild the server:

npm run build

Claude Configuration

Claude Desktop

Add to your Claude Desktop MCP configuration (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{
  "mcpServers": {
    "digitalocean": {
      "command": "node",
      "args": ["/path/to/digitalocean-mcp/dist/index.js"],
      "env": {
        "DIGITALOCEAN_API_TOKEN": "your-digitalocean-api-token"
      }
    }
  }
}

Claude Code (CLI)

For Claude Code users, the server auto-configures from environment variables:

export DIGITALOCEAN_API_TOKEN="your-digitalocean-api-token"
claude

Real-World Examples

Infrastructure Management

// Check droplet status across your infrastructure
{
  "tool": "call_digitalocean_api",
  "arguments": {
    "operationId": "droplets_list"
  }
}

// Scale a droplet
{
  "tool": "call_digitalocean_api",
  "arguments": {
    "operationId": "dropletActions_post",
    "parameters": {
      "droplet_id": "123456789",
      "type": "resize",
      "size": "s-2vcpu-4gb"
    }
  }
}

Database Operations

// List database clusters
{
  "tool": "call_digitalocean_api",
  "arguments": {
    "operationId": "databases_list_clusters"
  }
}

// Create database backup
{
  "tool": "call_digitalocean_api",
  "arguments": {
    "operationId": "databases_add_backup",
    "parameters": {
      "database_cluster_uuid": "your-cluster-uuid"
    }
  }
}

Load Balancer Management

// List load balancers
{
  "tool": "call_digitalocean_api",
  "arguments": {
    "operationId": "load_balancers_list"
  }
}

// Update load balancer configuration
{
  "tool": "call_digitalocean_api",
  "arguments": {
    "operationId": "load_balancers_update",
    "parameters": {
      "lb_id": "your-lb-id",
      "name": "updated-lb-name",
      "algorithm": "round_robin"
    }
  }
}

Security

  • API tokens are handled securely and never logged
  • All requests use HTTPS
  • Rate limiting is handled automatically
  • Environment variables are preferred for token storage

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

MIT License - see LICENSE file for details

Support

MCP Server · Populars

MCP Server · New

    render-oss

    Render MCP Server

    The Official Render MCP Server

    Community render-oss
    nhevers

    claude-recall

    Long-term memory layer for Clawd & Claude Code that learns and recalls your project context automatically

    Community nhevers
    VienLi

    lark-tools-mcp

    MCP server provides Feishu related operations to AI encoding agents such as cursor 飞书MCP插件,读取文档、发送消息、合同审批、数据处理.....

    Community VienLi
    joeseesun

    🎯 多源内容 → NotebookLM 智能处理器

    Claude Skill: Multi-source content processor for NotebookLM. Supports WeChat articles, web pages, YouTube, PDF, Markdown, search queries → Podcast/PPT/MindMap/Quiz etc.

    Community joeseesun
    avivsinai

    Langfuse MCP Server

    A Model Context Protocol (MCP) server for Langfuse, enabling AI agents to query Langfuse trace data for enhanced debugging and observability

    Community avivsinai