nikhil-ganage

mcp-server-airflow-token

Community nikhil-ganage
Updated

Apache Airflow MCP server with Bearer token authentication support for Astronomer and standalone Airflow

mcp-server-airflow-token

A Model Context Protocol (MCP) server for Apache Airflow with Bearer token authentication support, enabling seamless integration with Astronomer Cloud and standalone Airflow instances.

Based on mcp-server-apache-airflow by Gyeongmo Nathan Yang

This fork enhances the original MCP server with Bearer token authentication support, making it compatible with Astronomer Cloud and other token-based Airflow deployments.

Key Enhancements

  • Bearer Token Authentication - Primary authentication method for modern Airflow deployments
  • Astronomer Cloud Compatible - Works seamlessly with Astronomer's managed Airflow
  • Backward Compatible - Still supports username/password authentication
  • Enhanced URL Handling - Correctly handles deployment paths like /deployment-id

About

This project implements a Model Context Protocol server that wraps Apache Airflow's REST API, allowing MCP clients to interact with Airflow in a standardized way. It uses the official Apache Airflow client library to ensure compatibility and maintainability.

Feature Implementation Status

Feature API Path Status
DAG Management
List DAGs /api/v1/dags
Get DAG Details /api/v1/dags/{dag_id}
Pause DAG /api/v1/dags/{dag_id}
Unpause DAG /api/v1/dags/{dag_id}
Update DAG /api/v1/dags/{dag_id}
Delete DAG /api/v1/dags/{dag_id}
Get DAG Source /api/v1/dagSources/{file_token}
Patch Multiple DAGs /api/v1/dags
Reparse DAG File /api/v1/dagSources/{file_token}/reparse
DAG Runs
List DAG Runs /api/v1/dags/{dag_id}/dagRuns
Create DAG Run /api/v1/dags/{dag_id}/dagRuns
Get DAG Run Details /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Update DAG Run /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Delete DAG Run /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}
Get DAG Runs Batch /api/v1/dags/~/dagRuns/list
Clear DAG Run /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/clear
Set DAG Run Note /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/setNote
Get Upstream Dataset Events /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/upstreamDatasetEvents
Tasks
List DAG Tasks /api/v1/dags/{dag_id}/tasks
Get Task Details /api/v1/dags/{dag_id}/tasks/{task_id}
Get Task Instance /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}
List Task Instances /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances
Update Task Instance /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}
Clear Task Instances /api/v1/dags/{dag_id}/clearTaskInstances
Set Task Instances State /api/v1/dags/{dag_id}/updateTaskInstancesState
Variables
List Variables /api/v1/variables
Create Variable /api/v1/variables
Get Variable /api/v1/variables/{variable_key}
Update Variable /api/v1/variables/{variable_key}
Delete Variable /api/v1/variables/{variable_key}
Connections
List Connections /api/v1/connections
Create Connection /api/v1/connections
Get Connection /api/v1/connections/{connection_id}
Update Connection /api/v1/connections/{connection_id}
Delete Connection /api/v1/connections/{connection_id}
Test Connection /api/v1/connections/test
Pools
List Pools /api/v1/pools
Create Pool /api/v1/pools
Get Pool /api/v1/pools/{pool_name}
Update Pool /api/v1/pools/{pool_name}
Delete Pool /api/v1/pools/{pool_name}
XComs
List XComs /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries
Get XCom Entry /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries/{xcom_key}
Datasets
List Datasets /api/v1/datasets
Get Dataset /api/v1/datasets/{uri}
Get Dataset Events /api/v1/datasetEvents
Create Dataset Event /api/v1/datasetEvents
Get DAG Dataset Queued Event /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}
Get DAG Dataset Queued Events /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents
Delete DAG Dataset Queued Event /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri}
Delete DAG Dataset Queued Events /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents
Get Dataset Queued Events /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents
Delete Dataset Queued Events /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents
Monitoring
Get Health /api/v1/health
DAG Stats
Get DAG Stats /api/v1/dags/statistics
Config
Get Config /api/v1/config
Plugins
Get Plugins /api/v1/plugins
Providers
List Providers /api/v1/providers
Event Logs
List Event Logs /api/v1/eventLogs
Get Event Log /api/v1/eventLogs/{event_log_id}
System
Get Import Errors /api/v1/importErrors
Get Import Error Details /api/v1/importErrors/{import_error_id}
Get Health Status /api/v1/health
Get Version /api/v1/version

Setup

Dependencies

This project depends on the official Apache Airflow client library (apache-airflow-client). It will be automatically installed when you install this package.

Environment Variables

Set the following environment variables:

Token Authentication (Recommended)
AIRFLOW_HOST=<your-airflow-host>        # Optional, defaults to http://localhost:8080
AIRFLOW_TOKEN=<your-airflow-api-token>  # Your Airflow API token
AIRFLOW_API_VERSION=v1                  # Optional, defaults to v1
Basic Authentication (Alternative)
AIRFLOW_HOST=<your-airflow-host>        # Optional, defaults to http://localhost:8080
AIRFLOW_USERNAME=<your-airflow-username>
AIRFLOW_PASSWORD=<your-airflow-password>
AIRFLOW_API_VERSION=v1                  # Optional, defaults to v1

Note: If AIRFLOW_TOKEN is provided, it will be used for authentication. Otherwise, the server will fall back to basic authentication using username and password.

Usage with Claude Desktop

First, clone the repository:

git clone https://github.com/nikhil-ganage/mcp-server-airflow-token

Add to your claude_desktop_config.json:

With Token Authentication (Recommended)
{
  "mcpServers": {
    "apache-airflow": {
      "type": "stdio",
      "command": "uv",
      "args": [
        "--directory",
        "path-to-repo/mcp-server-airflow-token",
        "run",
        "mcp-server-airflow-token"
      ],
      "env": {
        "AIRFLOW_HOST": "https://astro_id.astronomer.run/id",
        "AIRFLOW_TOKEN": "TOKEN"
      }
    }
  }
}
With Basic Authentication
{
  "mcpServers": {
    "mcp-server-airflow-token": {
      "command": "uvx",
      "args": ["mcp-server-airflow-token"],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}

For read-only mode (recommended for safety):

Read-only with Token Authentication
{
  "mcpServers": {
    "mcp-server-airflow-token": {
      "command": "uvx",
      "args": ["mcp-server-airflow-token", "--read-only"],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_TOKEN": "your-api-token"
      }
    }
  }
}
Read-only with Basic Authentication
{
  "mcpServers": {
    "mcp-server-airflow-token": {
      "command": "uvx",
      "args": ["mcp-server-airflow-token", "--read-only"],
      "env": {
        "AIRFLOW_HOST": "https://your-airflow-host",
        "AIRFLOW_USERNAME": "your-username",
        "AIRFLOW_PASSWORD": "your-password"
      }
    }
  }
}

Replace path-to-repo with the actual path where you've cloned the repository.

Astronomer Cloud Configuration Example

For Astronomer Cloud deployments:

{
  "mcpServers": {
    "mcp-server-airflow-token": {
      "command": "uvx",
      "args": ["mcp-server-airflow-token"],
      "env": {
        "AIRFLOW_HOST": "https://your-astronomer-domain.astronomer.run/your-deployment-id",
        "AIRFLOW_TOKEN": "your-astronomer-api-token"
      }
    }
  }
}

Note: The deployment ID is part of your Astronomer Cloud URL path.

Selecting the API groups

You can select the API groups you want to use by setting the --apis flag.

uv run mcp-server-airflow-token --apis "dag,dagrun"

The default is to use all APIs.

Allowed values are:

  • config
  • connections
  • dag
  • dagrun
  • dagstats
  • dataset
  • eventlog
  • importerror
  • monitoring
  • plugin
  • pool
  • provider
  • taskinstance
  • variable
  • xcom

Read-Only Mode

You can run the server in read-only mode by using the --read-only flag. This will only expose tools that perform read operations (GET requests) and exclude any tools that create, update, or delete resources.

uv run mcp-server-airflow-token --read-only

In read-only mode, the server will only expose tools like:

  • Listing DAGs, DAG runs, tasks, variables, connections, etc.
  • Getting details of specific resources
  • Reading configurations and monitoring information
  • Testing connections (non-destructive)

Write operations like creating, updating, deleting DAGs, variables, connections, triggering DAG runs, etc. will not be available in read-only mode.

You can combine read-only mode with API group selection:

uv run mcp-server-airflow-token --read-only --apis "dag,variable"

Manual Execution

You can also run the server manually:

make run

make run accepts following options:

Options:

  • --port: Port to listen on for SSE (default: 8000)
  • --transport: Transport type (stdio/sse, default: stdio)

Or, you could run the sse server directly, which accepts same parameters:

make run-sse

Installation

You can install the server using pip or uvx:

# Using pip
pip install mcp-server-airflow-token

# Using uvx (recommended)
uvx mcp-server-airflow-token

Development

Setting up Development Environment

  1. Clone the repository:
git clone https://github.com/nikhil-ganage/mcp-server-airflow-token.git
cd mcp-server-airflow-token
  1. Install development dependencies:
uv sync --dev
  1. Create a .env file for environment variables (optional for development):
touch .env

Note: No environment variables are required for running tests. The AIRFLOW_HOST defaults to http://localhost:8080 for development and testing purposes.

Running Tests

The project uses pytest for testing with the following commands available:

# Run all tests
make test

Code Quality

# Run linting
make lint

# Run code formatting
make format

Continuous Integration

The project includes a GitHub Actions workflow (.github/workflows/test.yml) that automatically:

  • Runs tests on Python 3.10, 3.11, and 3.12
  • Executes linting checks using ruff
  • Runs on every push and pull request to main branch

The CI pipeline ensures code quality and compatibility across supported Python versions before any changes are merged.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

The package is deployed automatically to PyPI when project.version is updated in pyproject.toml.Follow semver for versioning.

Please include version update in the PR in order to apply the changes to core logic.

License

MIT License

MCP Server · Populars

MCP Server · New