M3: MIMIC-IV + MCP + Models ๐ฅ๐ค
Query MIMIC-IV medical data using natural language through MCP clients
Transform medical data analysis with AI! Ask questions about MIMIC-IV data in plain English and get instant insights. Choose between local demo data (free) or full cloud dataset (BigQuery).
Features
- Natural Language Queries: Ask questions about MIMIC-IV data in plain English
- Local SQLite: Fast queries on demo database (free, no setup)
- BigQuery Support: Access full MIMIC-IV dataset on Google Cloud
- Enterprise Security: OAuth2 authentication with JWT tokens and rate limiting
- SQL Injection Protection: Read-only queries with comprehensive validation
๐ Quick Start
๐บ Prefer video tutorials? Check out step-by-step video guides covering setup, PhysioNet configuration, and more.
Install uv (required for uvx)
We use uvx to run the MCP server. Install uv from the official installer, then verify with uv --version.
macOS and Linux:
curl -LsSf https://astral.sh/uv/install.sh | sh
Windows (PowerShell):
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
Verify installation:
uv --version
BigQuery Setup (Optional - Full Dataset)
Skip this if using SQLite demo database.
Install Google Cloud SDK:
- macOS:
brew install google-cloud-sdk - Windows/Linux: https://cloud.google.com/sdk/docs/install
- macOS:
Authenticate:
gcloud auth application-default loginOpens your browser - choose the Google account with BigQuery access to MIMIC-IV.
MCP Client Configuration
Paste one of the following into your MCP client config, then restart your client.
Supported clients: Claude Desktop, Cursor, Goose, and more.
SQLite (Demo Database) Free, local, no setup required. Demo database (136MB, 100 patients, 275 admissions) downloads automatically on first query. |
BigQuery (Full Dataset) Requires GCP credentials and PhysioNet access. Replace |
That's it! Restart your MCP client and ask:
- "What tools do you have for MIMIC-IV data?"
- "Show me patient demographics from the ICU"
- "What is the race distribution in admissions?"
Backend Comparison
| Feature | SQLite (Demo) | BigQuery (Full) |
|---|---|---|
| Cost | Free | BigQuery usage fees |
| Setup | Zero config | GCP credentials required |
| Data Size | 100 patients, 275 admissions | 365k patients, 546k admissions |
| Speed | Fast (local) | Network latency |
| Use Case | Learning, development | Research, production |
Alternative Installation Methods
Already have Docker or prefer pip? Here are other ways to run m3:
๐ณ Docker (No Python Required)
SQLite: |
BigQuery: |
MCP config (same for both):
{
"mcpServers": {
"m3": {
"command": "docker",
"args": ["exec", "-i", "m3-server", "python", "-m", "m3.mcp_server"]
}
}
}
Stop: docker stop m3-server && docker rm m3-server
pip Install + CLI Tools
pip install m3-mcp
๐ก CLI commands: Run
m3 --helpto see all available options.
Useful CLI commands:
m3 init mimic-iv-demo- Download demo databasem3 config- Generate MCP configuration interactivelym3 config claude --backend bigquery --project-id YOUR_PROJECT_ID- Quick BigQuery setup
Example MCP config:
{
"mcpServers": {
"m3": {
"command": "m3-mcp-server",
"env": {
"M3_BACKEND": "sqlite"
}
}
}
}
Local Development
For contributors:
git clone https://github.com/rafiattrach/m3.git && cd m3
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install -e ".[dev]"
pre-commit install
MCP config:
{
"mcpServers": {
"m3": {
"command": "/path/to/m3/.venv/bin/python",
"args": ["-m", "m3.mcp_server"],
"cwd": "/path/to/m3",
"env": {
"M3_BACKEND": "sqlite"
}
}
}
}
Advanced Configuration
Need to configure other MCP clients or customize settings? Use these commands:
Interactive Configuration (Universal)
m3 config
Generates configuration for any MCP client with step-by-step guidance.
Quick Configuration Examples
# Quick universal config with defaults
m3 config --quick
# Universal config with custom database
m3 config --quick --backend sqlite --db-path /path/to/database.db
# Save config to file for other MCP clients
m3 config --output my_config.json
OAuth2 Authentication (Optional)
For production deployments requiring secure access to medical data:
# Enable OAuth2 with Claude Desktop
m3 config claude --enable-oauth2 \
--oauth2-issuer https://your-auth-provider.com \
--oauth2-audience m3-api \
--oauth2-scopes "read:mimic-data"
# Or configure interactively
m3 config # Choose OAuth2 option during setup
Supported OAuth2 Providers:
- Auth0, Google Identity Platform, Microsoft Azure AD, Keycloak
- Any OAuth2/OpenID Connect compliant provider
Key Benefits:
- ๐ JWT Token Validation: Industry-standard security
- ๐ฏ Scope-based Access: Fine-grained permissions
- ๐ก๏ธ Rate Limiting: Abuse protection
- ๐ Audit Logging: Security monitoring
๐ Complete OAuth2 Setup Guide: See
docs/OAUTH2_AUTHENTICATION.mdfor detailed configuration, troubleshooting, and production deployment guidelines.
Available MCP Tools
When your MCP client processes questions, it uses these tools automatically:
- get_database_schema: List all available tables
- get_table_info: Get column info and sample data for a table
- execute_mimic_query: Execute SQL SELECT queries
- get_icu_stays: ICU stay information and length of stay data
- get_lab_results: Laboratory test results
- get_race_distribution: Patient race distribution
Example Prompts
Try asking your MCP client these questions:
Demographics & Statistics:
Prompt:What is the race distribution in MIMIC-IV admissions?Prompt:Show me patient demographics for ICU staysPrompt:How many total admissions are in the database?
Clinical Data:
Prompt:Find lab results for patient XPrompt:What lab tests are most commonly ordered?Prompt:Show me recent ICU admissions
Data Exploration:
Prompt:What tables are available in the database?Prompt:What tools do you have for MIMIC-IV data?
Troubleshooting
Common Issues
SQLite "Database not found" errors:
# Re-download demo database
m3 init mimic-iv-demo
MCP client server not starting:
- Check your MCP client logs (for Claude Desktop: Help โ View Logs)
- Verify configuration file location and format
- Restart your MCP client completely
OAuth2 Authentication Issues
"Missing OAuth2 access token" errors:
# Set your access token
export M3_OAUTH2_TOKEN="Bearer your-access-token-here"
"OAuth2 authentication failed" errors:
- Verify your token hasn't expired
- Check that required scopes are included in your token
- Ensure your OAuth2 provider configuration is correct
Rate limit exceeded:
- Wait for the rate limit window to reset
- Contact your administrator to adjust limits if needed
๐ง OAuth2 Troubleshooting: See
OAUTH2_AUTHENTICATION.mdfor detailed OAuth2 troubleshooting and configuration guides.
BigQuery Issues
"Access Denied" errors:
- Ensure you have MIMIC-IV access on PhysioNet
- Verify your Google Cloud project has BigQuery API enabled
- Check that you're authenticated:
gcloud auth list
"Dataset not found" errors:
- Confirm your project ID is correct
- Ensure you have access to
physionet-dataproject
Authentication issues:
# Re-authenticate
gcloud auth application-default login
# Check current authentication
gcloud auth list
For Developers
See "Local Development" section above for setup instructions.
Running Tests
pytest # All tests (includes OAuth2 and BigQuery mocks)
pytest tests/test_mcp_server.py -v # MCP server tests
pytest tests/test_oauth2_auth.py -v # OAuth2 authentication tests
Test BigQuery Locally
# Set environment variables
export M3_BACKEND=bigquery
export M3_PROJECT_ID=your-project-id
export GOOGLE_CLOUD_PROJECT=your-project-id
# Optional: Test with OAuth2 authentication
export M3_OAUTH2_ENABLED=true
export M3_OAUTH2_ISSUER_URL=https://your-provider.com
export M3_OAUTH2_AUDIENCE=m3-api
export M3_OAUTH2_TOKEN="Bearer your-test-token"
# Test MCP server
m3-mcp-server
Roadmap
- Local Full Dataset: Complete MIMIC-IV locally (no cloud costs)
- Advanced Tools: More specialized medical data functions
- Visualization: Built-in plotting and charting tools
- Enhanced Security: Role-based access control, audit logging
- Multi-tenant Support: Organization-level data isolation
Contributing
We welcome contributions! Please:
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Submit a pull request
Citation
If you use M3 in your research, please cite:
@article{attrach2025conversational,
title={Conversational LLMs Simplify Secure Clinical Data Access, Understanding, and Analysis},
author={Attrach, Rafi Al and Moreira, Pedro and Fani, Rajna and Umeton, Renato and Celi, Leo Anthony},
journal={arXiv preprint arXiv:2507.01053},
year={2025}
}
You can also use the "Cite this repository" button at the top of the GitHub page for other formats.
Related Projects
M3 has been forked and adapted by the community:
- MCPStack-MIMIC - Integrates M3 with other MCP servers (Jupyter, sklearn, etc.)
Built with โค๏ธ for the medical AI community
Need help? Open an issue on GitHub or check our troubleshooting guide above.