ravikant1918

๐Ÿง  NeuroDev MCP Server

Community ravikant1918
Updated

NeuroDev MCP is a smart Model Context Protocol server for Python development. It performs deep code review, generates high-quality unit tests, runs test suites with coverage, and formats code automatically โ€” all through an AI assistant like Claude or Cline.

๐Ÿง  NeuroDev MCP Server

Intelligent Code Analysis, Test Generation & Execution

Python 3.8+MCPLicense: MITTests

A powerful Model Context Protocol (MCP) server that supercharges your Python development workflow with AI-powered code review, intelligent test generation, and comprehensive test execution.

Features โ€ข Installation โ€ข Quick Start โ€ข Tools โ€ข Examples

โœจ Features

๐Ÿ” Code Review

  • 6 Powerful Analyzers
    • pylint - Code quality & PEP8
    • flake8 - Style enforcement
    • mypy - Type checking
    • bandit - Security scanning
    • radon - Complexity metrics
    • AST - Custom inspections
  • Real-time issue detection
  • Security vulnerability scanning
  • Complexity & maintainability scores

๐Ÿงช Test Generation

  • Intelligent AST Analysis
    • Auto-generate pytest tests
    • Happy path coverage
    • Edge case handling
    • Exception testing
    • Type validation tests
  • Supports functions & classes
  • Type-hint aware

โ–ถ๏ธ Test Execution

  • Comprehensive Testing
    • Isolated environment
    • Coverage reporting
    • Line-by-line analysis
    • Timeout protection
  • Detailed pass/fail results
  • Performance metrics

๐ŸŽจ Code Formatting

  • Auto-formatting
    • black - Opinionated style
    • autopep8 - PEP8 compliance
  • Configurable line length
  • Consistent code style
  • One-command formatting

๐Ÿ“ฆ Installation

Quick Install

```bash

# Clone the repository
git clone https://github.com/ravikant1918/neurodev-mcp.git
cd neurodev-mcp

# Create virtual environment (recommended)
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\\Scripts\\activate

# Install the package
pip install -e .
\`\`\`

### **Verify Installation**

\`\`\`bash
# Run tests (should show 15/15 passing)
python test_installation.py

# Test the server
python -m neurodev_mcp.server
\`\`\`

<details>
<summary><b>๐Ÿ“ Project Structure</b> (click to expand)</summary>

\`\`\`
neurodev-mcp/
โ”œโ”€ neurodev_mcp/              # ๐Ÿ“ฆ Main package
โ”‚   โ”œโ”€ __init__.py            # Package exports
โ”‚   โ”œโ”€ server.py              # MCP server entry point
โ”‚   โ”œโ”€ analyzers/             # ๐Ÿ” Code analysis
โ”‚   โ”‚   โ”œโ”€ __init__.py
โ”‚   โ”‚   โ””โ”€ code_analyzer.py   # Multi-tool static analysis
โ”‚   โ”œโ”€ generators/            # ๐Ÿงช Test generation
โ”‚   โ”‚   โ”œโ”€ __init__.py
โ”‚   โ”‚   โ””โ”€ test_generator.py  # AST-based test creation
โ”‚   โ””โ”€ executors/             # โ–ถ๏ธ Test execution
โ”‚       โ”œโ”€ __init__.py
โ”‚       โ””โ”€ test_executor.py   # Test running & formatting
โ”œโ”€ pyproject.toml             # Project configuration
โ”œโ”€ README.md                  # This file
โ”œโ”€ test_installation.py       # Installation validator
โ”œโ”€ examples.py                # Usage examples
โ””โ”€ requirements.txt           # Dependencies

๐Ÿš€ Quick Start

Step 1: Configure Your MCP Client

๐Ÿ–ฅ๏ธ Claude Desktop

Edit ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "neurodev-mcp": {
      "command": "/absolute/path/to/neurodev-mcp/.venv/bin/python",
      "args": ["-m", "neurodev_mcp.server"]
    }
  }
}

๐Ÿ’ก Tip: Replace /absolute/path/to/neurodev-mcp with your actual path

๐Ÿ”ง Cline (VSCode)

Add to your MCP settings:

{
  "neurodev-mcp": {
    "command": "python",
    "args": ["-m", "neurodev_mcp.server"]
  }
}
๐Ÿ Standalone Usage

Run the server directly:

# Using the module
python -m neurodev_mcp.server

# Or as a command (if installed)
neurodev-mcp

Step 2: Restart Your Client

Restart Claude Desktop or reload VSCode to load the server.

Step 3: Start Using! ๐ŸŽ‰

Try these commands with your AI assistant:

  • "Review this Python code for issues"
  • "Generate unit tests for this function"
  • "Run these tests with coverage"
  • "Format this code to PEP8 standards"

๐ŸŒ Transport Options

NeuroDev MCP supports multiple transport protocols for different use cases:

STDIO (Default) - Local CLI

Perfect for local development with MCP clients like Claude Desktop or Cline:

# Default STDIO transport
neurodev-mcp

# Or explicitly specify STDIO
neurodev-mcp --transport stdio

Configuration (Claude Desktop):

{
  "mcpServers": {
    "neurodev-mcp": {
      "command": "neurodev-mcp",
      "args": ["--transport", "stdio"]
    }
  }
}

SSE (Server-Sent Events) - Web Integration

For web-based integrations and HTTP streaming:

# Run with SSE on default port (8000)
neurodev-mcp --transport sse

# Custom host and port
neurodev-mcp --transport sse --host 0.0.0.0 --port 3000

Endpoints:

  • SSE Stream: http://localhost:8000/sse
  • Messages: http://localhost:8000/messages (POST)

Web Client Example:

const sse = new EventSource('http://localhost:8000/sse');

sse.onmessage = (event) => {
  const data = JSON.parse(event.data);
  console.log('Received:', data);
};

// Send message
fetch('http://localhost:8000/messages', {
  method: 'POST',
  headers: { 'Content-Type': 'application/json' },
  body: JSON.stringify({
    method: 'tools/call',
    params: {
      name: 'code_review',
      arguments: { code: 'def test(): pass', analyzers: ['pylint'] }
    }
  })
});

Transport Comparison

Transport Use Case Best For
STDIO Local CLI clients Claude Desktop, Cline, local development
SSE Web integrations Browser apps, webhooks, remote clients

๐Ÿ› ๏ธ Available Tools

1. code_review

๐Ÿ” Comprehensive code analysis with multiple static analysis tools

Input:

{
  "code": "def calculate(x):\n    return x * 2",
  "analyzers": ["pylint", "flake8", "mypy", "bandit", "radon", "ast"]
}

Output:

  • Detailed issue reports from each analyzer
  • Security vulnerabilities
  • Complexity metrics
  • Code quality scores
  • Line-by-line suggestions

2. generate_tests

๐Ÿงช Intelligent pytest test generation using AST analysis

Input:

{
  "code": "def add(a: int, b: int) -> int:\n    return a + b",
  "module_name": "calculator",
  "save": false
}

Output:

  • Complete pytest test suite
  • Multiple test cases (happy path, edge cases, exceptions)
  • Type validation tests
  • Ready-to-run test code

3. run_tests

โ–ถ๏ธ Execute pytest tests with coverage reporting

Input:

{
  "test_code": "def test_add():\n    assert add(1, 2) == 3",
  "source_code": "def add(a, b):\n    return a + b",
  "timeout": 30
}

Output:

  • Pass/fail status
  • Coverage percentage
  • Line coverage details
  • Execution time
  • Detailed stdout/stderr

4. format_code

๐ŸŽจ Auto-format Python code to PEP8 standards

Input:

{
  "code": "def   messy(  x,y  ):\n        return x+y",
  "line_length": 88
}

Output:

  • Beautifully formatted code
  • PEP8 compliant
  • Consistent style
  • Change detection

๐Ÿ’ก Usage Examples

Example 1: Complete Code Review Workflow

You: "Review this code for issues and security problems"

[paste code]

AI: [Uses code_review tool]
    โ†’ Finds 3 style issues
    โ†’ Detects 1 security vulnerability
    โ†’ Suggests complexity improvements
    
You: "Fix those issues and show me the updated code"

AI: [Provides fixed code with explanations]

Example 2: Test Generation & Execution

You: "Generate tests for this function and run them"

def divide(a: float, b: float) -> float:
    if b == 0:
        raise ValueError("Cannot divide by zero")
    return a / b

AI: [Uses generate_tests tool]
    โ†’ Creates 5 test cases
    โ†’ Includes edge cases (zero, negative numbers)
    โ†’ Tests exception handling
    
    [Uses run_tests tool]
    โ†’ 5/5 tests passing โœ“
    โ†’ 100% code coverage
    โ†’ All edge cases handled

Example 3: Code Formatting

You: "Format this messy code"

def   calculate(  x,y,z  ):
        result=x+y+z
        if result>10:
                    return   True
        return False

AI: [Uses format_code tool]
    โ†’ Applies black formatting
    โ†’ Returns clean, PEP8-compliant code

def calculate(x, y, z):
    result = x + y + z
    if result > 10:
        return True
    return False

๐Ÿ“‹ Requirements

Package Version Purpose
mcp โ‰ฅ0.9.0 Model Context Protocol SDK
pylint โ‰ฅ3.0.0 Code quality analysis
flake8 โ‰ฅ7.0.0 Style checking
mypy โ‰ฅ1.7.0 Static type checking
bandit โ‰ฅ1.7.5 Security scanning
radon โ‰ฅ6.0.1 Complexity metrics
black โ‰ฅ23.12.0 Code formatting
autopep8 โ‰ฅ2.0.4 PEP8 formatting
pytest โ‰ฅ7.4.3 Testing framework
pytest-cov โ‰ฅ4.1.0 Coverage reporting
pytest-timeout โ‰ฅ2.2.0 Test timeouts

Python: 3.8 or higher

๐Ÿงช Development

Running Tests

# Run installation tests
python test_installation.py

# Run examples
python examples.py

# Run pytest (if you add tests)
pytest

Using as a Library

from neurodev_mcp import CodeAnalyzer, TestGenerator, TestExecutor
import asyncio

# Analyze code
code = "def hello(): print('world')"
result = asyncio.run(CodeAnalyzer.analyze_ast(code))

# Generate tests
tests = TestGenerator.generate_tests(code, "mymodule")

# Run tests
output = TestExecutor.run_tests(test_code, source_code)

โ“ Troubleshooting

Server not appearing in MCP client?
  • โœ… Check that the path in config is absolute
  • โœ… Ensure the Python executable path is correct
  • โœ… Restart Claude Desktop or VSCode completely
  • โœ… Check server logs for errors
Import or module errors?
# Reinstall the package
pip install -e .

# Verify installation
python -c "from neurodev_mcp import CodeAnalyzer; print('โœ“ OK')"

# Run installation tests
python test_installation.py
Tests failing?
  • โœ… Ensure Python 3.8+ is installed
  • โœ… Activate virtual environment: source .venv/bin/activate
  • โœ… Reinstall dependencies: pip install -e .
  • โœ… Run: python test_installation.py to diagnose
Performance issues?
  • Some analyzers (pylint, mypy) can be slow on large files
  • Use specific analyzers: "analyzers": ["flake8", "ast"]
  • Increase timeout for large test suites
  • Consider caching results (future feature)

๐Ÿค Contributing

Contributions are welcome! Here's how:

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes
  4. Run tests: python test_installation.py
  5. Commit: git commit -m 'Add amazing feature'
  6. Push: git push origin feature/amazing-feature
  7. Open a Pull Request

Future Enhancements

  • Additional analyzers (pydocstyle, vulture)
  • Result caching for performance
  • Configuration file support
  • Web dashboard
  • Multi-language support
  • CI/CD pipeline

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

๐Ÿ“ž Support

Ready to supercharge your Python development! ๐Ÿš€

Made with โค๏ธ by the NeuroDev Team

โญ Star on GitHub โ€ข ๐Ÿ› Report Bug โ€ข โœจ Request Feature

MCP Server ยท Populars

MCP Server ยท New