mcp-embedding-search
A Model Context Protocol (MCP) server that queries a Turso databasecontaining embeddings and transcript segments. This tool allows usersto search for relevant transcript segments by asking questions,without generating new embeddings.
Features
- ๐ Vector similarity search for transcript segments
- ๐ Relevance scoring based on cosine similarity
- ๐ Complete transcript metadata (episode title, timestamps)
- โ๏ธ Configurable search parameters (limit, minimum score)
- ๐ Efficient database connection pooling
- ๐ก๏ธ Comprehensive error handling
- ๐ Performance optimized for quick responses
Configuration
This server requires configuration through your MCP client. Here areexamples for different environments:
Cline Configuration
Add this to your Cline MCP settings:
{
"mcpServers": {
"mcp-embedding-search": {
"command": "node",
"args": ["/path/to/mcp-embedding-search/dist/index.js"],
"env": {
"TURSO_URL": "your-turso-database-url",
"TURSO_AUTH_TOKEN": "your-turso-auth-token"
}
}
}
}
Claude Desktop Configuration
Add this to your Claude Desktop configuration:
{
"mcpServers": {
"mcp-embedding-search": {
"command": "node",
"args": ["/path/to/mcp-embedding-search/dist/index.js"],
"env": {
"TURSO_URL": "your-turso-database-url",
"TURSO_AUTH_TOKEN": "your-turso-auth-token"
}
}
}
}
API
The server implements one MCP tool:
search_embeddings
Search for relevant transcript segments using vector similarity.
Parameters:
question
(string, required): The query text to search forlimit
(number, optional): Number of results to return (default: 5,max: 50)min_score
(number, optional): Minimum similarity threshold(default: 0.5, range: 0-1)
Response format:
[
{
"episode_title": "Episode Title",
"segment_text": "Transcript segment content...",
"start_time": 123.45,
"end_time": 167.89,
"similarity": 0.85
}
// Additional results...
]
Database Schema
This tool expects a Turso database with the following schema:
CREATE TABLE embeddings (
id INTEGER PRIMARY KEY AUTOINCREMENT,
transcript_id INTEGER NOT NULL,
embedding TEXT NOT NULL,
FOREIGN KEY(transcript_id) REFERENCES transcripts(id)
);
CREATE TABLE transcripts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
episode_title TEXT NOT NULL,
segment_text TEXT NOT NULL,
start_time REAL NOT NULL,
end_time REAL NOT NULL
);
The embedding
column should contain vector embeddings that can beused with the vector_distance_cos
function.
Development
Setup
- Clone the repository
- Install dependencies:
npm install
- Build the project:
npm run build
- Run in development mode:
npm run dev
Publishing
The project uses changesets for version management. To publish:
- Create a changeset:
npm run changeset
- Version the package:
npm run version
- Publish to npm:
npm run release
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
MIT License - see the LICENSE file for details.
Acknowledgments
- Built on theModel Context Protocol
- Designed for efficient vector similarity search in transcriptdatabases