๐ง Farnsworth: Your Claude Companion AI
Give Claude superpowers: persistent memory, model swarms, multimodal understanding, and self-evolution.
Documentation โข Roadmap โข Contributing โข Docker
๐ฏ What is Farnsworth?
Farnsworth is a companion AI system that integrates with Claude Code to give Claude capabilities it doesn't have on its own:
| Without Farnsworth | With Farnsworth |
|---|---|
| ๐ซ Claude forgets everything between sessions | โ Claude remembers your preferences forever |
| ๐ซ Claude is a single model | โ Model Swarm: 12+ models collaborate via PSO |
| ๐ซ Claude can't see images or hear audio | โ Multimodal: vision (CLIP/BLIP) + voice (Whisper) |
| ๐ซ Claude never learns from feedback | โ Claude evolves and adapts to you |
| ๐ซ Single user only | โ Team collaboration with shared memory |
| ๐ซ High RAM/VRAM requirements | โ Runs on <2GB RAM with efficient models |
All processing happens locally on your machine. Your data never leaves your computer.
โจ What's New in v0.5.0
- ๐ Model Swarm - PSO-based collaborative inference with multiple small models
- ๐ฎ Proactive Intelligence - Anticipatory suggestions based on context and habits
- ๐ 12+ New Models - Phi-4-mini, SmolLM2, Qwen3-4B, TinyLlama, BitNet 2B
- โก Ultra-Efficient - Run on <2GB RAM with TinyLlama, Qwen3-0.6B
- ๐ฏ Smart Routing - Mixture-of-Experts automatically picks best model per task
- ๐ Speculative Decoding - 2.5x speedup with draft+verify pairs
- ๐ Hardware Profiles - Auto-configure based on your available resources
Previously Added (v0.4.0)
- ๐ผ๏ธ Vision Module - CLIP/BLIP image understanding, VQA, OCR
- ๐ค Voice Module - Whisper transcription, speaker diarization, TTS
- ๐ฆ Docker Support - One-command deployment with GPU support
- ๐ฅ Team Collaboration - Shared memory pools, multi-user sessions
๐ Model Swarm: Collaborative Multi-Model Inference
The Model Swarm system enables multiple small models to work together, achieving better results than any single model:
Swarm Strategies
| Strategy | Description | Best For |
|---|---|---|
| PSO Collaborative | Particle Swarm Optimization guides model selection | Complex tasks |
| Parallel Vote | Run 3+ models, vote on best response | Quality-critical |
| Mixture of Experts | Route to specialist per task type | General use |
| Speculative Ensemble | Fast model drafts, strong model verifies | Speed + quality |
| Fastest First | Start fast, escalate if confidence low | Low latency |
| Confidence Fusion | Weighted combination of outputs | High reliability |
๐๏ธ Architecture & Privacy
Farnsworth runs 100% locally on your machine.
- No Server Costs: You do not need to pay for hosting.
- Your Data: All memories and files stay on your computer.
- How it connects: The Claude Desktop App spawns Farnsworth as a background process using the Model Context Protocol (MCP).
Supported Models (Jan 2025)
| Model | Params | RAM | Strengths |
|---|---|---|---|
| Phi-4-mini-reasoning | 3.8B | 6GB | Rivals o1-mini in math/reasoning |
| Phi-4-mini | 3.8B | 6GB | GPT-3.5 class, 128K context |
| DeepSeek-R1-1.5B | 1.5B | 4GB | o1-style reasoning, MIT license |
| Qwen3-4B | 4B | 5GB | MMLU-Pro 74%, multilingual |
| SmolLM2-1.7B | 1.7B | 3GB | Best quality at size |
| Qwen3-0.6B | 0.6B | 2GB | Ultra-light, 100+ languages |
| TinyLlama-1.1B | 1.1B | 2GB | Fastest, edge devices |
| BitNet-2B | 2B | 1GB | Native 1-bit, 5-7x CPU speedup |
| Gemma-3n-E2B | 2B eff | 4GB | Multimodal (text/image/audio) |
| Phi-4-multimodal | 5.6B | 8GB | Vision + speech + reasoning |
Hardware Profiles
Farnsworth auto-configures based on your hardware:
minimal: # <4GB RAM: TinyLlama, Qwen3-0.6B
cpu_only: # 8GB+ RAM, no GPU: BitNet, SmolLM2
low_vram: # 2-4GB VRAM: DeepSeek-R1, Qwen3-0.6B
medium_vram: # 4-8GB VRAM: Phi-4-mini, Qwen3-4B
high_vram: # 8GB+ VRAM: Full swarm with verification
โก Quick Start
๐ฆ Option 1: One-Line Install (Recommended)
Farnsworth is available on PyPI. This is the easiest way to get started.
pip install farnsworth-ai
Running the Server:
# Start the MCP server
farnsworth-server
# Or customize configuration
farnsworth-server --debug --port 8000
๐ณ Option 2: Docker
git clone https://github.com/timowhite88/Farnsworth.git
cd Farnsworth
docker-compose -f docker/docker-compose.yml up -d
๐ ๏ธ Option 3: Source (For Developers)
git clone https://github.com/timowhite88/Farnsworth.git
cd Farnsworth
pip install -r requirements.txt
๐ Configure Claude Code
Add to your Claude Code MCP settings (usually found in claude_desktop_config.json):
For PyPI Install:
{
"mcpServers": {
"farnsworth": {
"command": "farnsworth-server",
"args": [],
"env": {
"FARNSWORTH_LOG_LEVEL": "INFO"
}
}
}
}
๐ Full Installation Guide โ
๐ Key Features
๐ง Advanced Memory System
Claude finally remembers! Multi-tier hierarchical memory:
| Memory Type | Description |
|---|---|
| Working Memory | Current conversation context |
| Episodic Memory | Timeline of interactions, "on this day" recall |
| Semantic Layers | 5-level abstraction hierarchy |
| Knowledge Graph | Entities, relationships, temporal edges |
| Archival Memory | Permanent vector-indexed storage |
| Memory Dreaming | Background consolidation during idle time |
๐ค Agent Swarm (11 Specialists)
Claude can delegate tasks to AI agents:
| Core Agents | Description |
|---|---|
| Code Agent | Programming, debugging, code review |
| Reasoning Agent | Logic, math, step-by-step analysis |
| Research Agent | Information gathering, summarization |
| Creative Agent | Writing, brainstorming, ideation |
| Advanced Agents (v0.3+) | Description |
|---|---|
| Planner Agent | Task decomposition, dependency tracking |
| Critic Agent | Quality scoring, iterative refinement |
| Web Agent | Intelligent browsing, form filling |
| FileSystem Agent | Project understanding, smart search |
| Collaboration (v0.3+) | Description |
|---|---|
| Agent Debates | Multi-perspective synthesis |
| Specialization Learning | Skill development, task routing |
| Hierarchical Teams | Manager coordination, load balancing |
๐ผ๏ธ Vision Understanding (v0.4+)
See and understand images:
- CLIP Integration - Zero-shot classification, image embeddings
- BLIP Integration - Captioning, visual question answering
- OCR - Extract text from images (EasyOCR)
- Scene Graphs - Extract objects and relationships
- Image Similarity - Compare and search images
๐ค Voice Interaction (v0.4+)
Hear and speak:
- Whisper Transcription - Real-time and batch processing
- Speaker Diarization - Identify different speakers
- Text-to-Speech - Multiple voice options
- Voice Commands - Natural language control
- Continuous Listening - Hands-free mode
๐ฅ Team Collaboration (v0.4+)
Work together with shared AI:
- Shared Memory Pools - Team knowledge bases
- Multi-User Support - Individual profiles and preferences
- Permission System - Role-based access control
- Collaborative Sessions - Real-time multi-user interaction
- Audit Logging - Compliance-ready access trails
๐ Self-Evolution
Farnsworth learns from your feedback and improves automatically:
- Fitness Tracking - Monitors task success, efficiency, satisfaction
- Genetic Optimization - Evolves better configurations over time
- User Avatar - Builds a model of your preferences
- LoRA Evolution - Adapts model weights to your usage
๐ Smart Retrieval (RAG 2.0)
Self-refining retrieval that gets better at finding relevant information:
- Hybrid Search - Semantic + BM25 keyword search
- Query Understanding - Intent classification, expansion
- Multi-hop Retrieval - Complex question answering
- Context Compression - Token-efficient memory injection
- Source Attribution - Confidence scoring
๐ ๏ธ Architecture
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Claude Code โ
โ (Your AI Programming Partner) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ MCP Protocol
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Farnsworth MCP Server โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โ Memory โ โ Agent โ โEvolution โ โMultimodalโ โ
โ โ Tools โ โ Tools โ โ Tools โ โ Tools โ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ Memory โ โ Agent โ โ Multimodal โ
โ System โ โ Swarm โ โ Engine โ
โ โ โ โ โ โ
โ โข Episodic โ โ โข Planner โ โ โข Vision โ
โ โข Semantic โ โ โข Critic โ โ (CLIP/BLIP)โ
โ โข Knowledge โ โ โข Web โ โ โข Voice โ
โ Graph v2 โ โ โข FileSystem โ โ (Whisper) โ
โ โข Archival โ โ โข Debates โ โ โข OCR โ
โ โข Sharing โ โ โข Teams โ โ โข TTS โ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ Evolution โ โCollaboration โ โ Storage โ
โ Engine โ โ System โ โ Backends โ
โ โ โ โ โ โ
โ โข Genetic โ โ โข Multi-User โ โ โข FAISS โ
โ Optimizer โ โ โข Shared โ โ โข ChromaDB โ
โ โข Fitness โ โ Memory โ โ โข Redis โ
โ Tracker โ โ โข Sessions โ โ โข SQLite โ
โ โข LoRA โ โ โข Permissionsโ โ โ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ โ โ
โโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Model Swarm (v0.5+) โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ PSO Collaborative Engine โ โ
โ โ โข Particle positions = model configs โ โ
โ โ โข Velocity = adaptation direction โ โ
โ โ โข Global/personal best tracking โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โ Phi-4 โ โDeepSeek โ โ Qwen3 โ โ SmolLM2 โ โ
โ โ mini โ โ R1-1.5B โ โ 0.6B/4B โ โ 1.7B โ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โTinyLlama โ โ BitNet โ โ Gemma โ โ Cascade โ โ
โ โ 1.1B โ โ 2B(1-bit)โ โ 3n-E2B โ โ (hybrid) โ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ง Tools Available to Claude
Once connected, Claude has access to these tools:
| Tool | Description |
|---|---|
farnsworth_remember(content, tags) |
Store information in long-term memory |
farnsworth_recall(query, limit) |
Search and retrieve relevant memories |
farnsworth_delegate(task, agent_type) |
Delegate to specialist agent |
farnsworth_evolve(feedback) |
Provide feedback for system improvement |
farnsworth_status() |
Get system health and statistics |
farnsworth_vision(image, task) |
Analyze images (caption, VQA, OCR) |
farnsworth_voice(audio, task) |
Process audio (transcribe, diarize) |
farnsworth_collaborate(action, ...) |
Team collaboration operations |
farnsworth_swarm(prompt, strategy) |
NEW: Multi-model collaborative inference |
๐ฆ Docker Deployment
Multiple deployment profiles available:
# Basic deployment
docker-compose -f docker/docker-compose.yml up -d
# With GPU support
docker-compose -f docker/docker-compose.yml --profile gpu up -d
# With Ollama + ChromaDB
docker-compose -f docker/docker-compose.yml --profile ollama --profile chromadb up -d
# Development mode (hot reload + debugger)
docker-compose -f docker/docker-compose.yml --profile dev up -d
See docker/docker-compose.yml for all options.
๐ Dashboard
Farnsworth includes a Streamlit dashboard for visualization:
python main.py --ui
# Or with Docker:
docker-compose -f docker/docker-compose.yml --profile ui-only up -d
๐ธ Dashboard Features
- Memory Browser - Search and explore all stored memories
- Episodic Timeline - Visual history of interactions
- Knowledge Graph - 3D entity relationships
- Agent Monitor - Active agents and task history
- Evolution Dashboard - Fitness metrics and improvement trends
- Team Collaboration - Shared pools and active sessions
- Model Swarm Monitor - PSO state, model performance, strategy stats
๐ Roadmap
See ROADMAP.md for detailed plans.
Completed โ
- v0.1.0 - Core memory, agents, evolution
- v0.2.0 - Enhanced memory (episodic, semantic, sharing)
- v0.3.0 - Advanced agents (planner, critic, web, filesystem, debates, teams)
- v0.4.0 - Multimodal (vision, voice) + collaboration + Docker
- v0.5.0 - Model Swarm + 12 new models + hardware profiles
Coming Next
- ๐ฌ Video understanding and summarization
- ๐ Encryption at rest (AES-256)
- โ๏ธ Cloud deployment templates (AWS, Azure, GCP)
- ๐ Performance optimization (<100ms recall)
๐ก Why "Farnsworth"?
Named after Professor Hubert J. Farnsworth from Futurama - a brilliant inventor who created countless gadgets and whose catchphrase "Good news, everyone!" perfectly captures what we hope you'll feel when using this tool with Claude.
๐ Requirements
| Minimum | Recommended | With Full Swarm |
|---|---|---|
| Python 3.10+ | Python 3.11+ | Python 3.11+ |
| 4GB RAM | 8GB RAM | 16GB RAM |
| 2-core CPU | 4-core CPU | 8-core CPU |
| 5GB storage | 20GB storage | 50GB storage |
| - | 4GB VRAM | 8GB+ VRAM |
Supported Platforms: Windows 10+, macOS 11+, Linux
Optional Dependencies:
ollama- Local LLM inference (recommended)llama-cpp-python- Direct GGUF inferencetorch- GPU accelerationtransformers- Vision/Voice modelsplaywright- Web browsing agentwhisper- Voice transcription
๐ License
Farnsworth is dual-licensed:
| Use Case | License |
|---|---|
| Personal / Educational / Non-commercial | FREE |
| Commercial (revenue > $1M or enterprise) | Commercial License Required |
See LICENSE for details. For commercial licensing, contact via GitHub.
๐ค Contributing
We welcome contributions! See CONTRIBUTING.md for guidelines.
Priority Areas:
- Video understanding module
- Cloud deployment templates
- Performance benchmarks
- Additional model integrations
- Documentation improvements
๐ Documentation
- ๐ User Guide - Complete usage documentation
- ๐บ๏ธ Roadmap - Future plans and features
- ๐ค Contributing - How to contribute
- ๐ License - License terms
- ๐ณ Docker Guide - Container deployment
- ๐ Model Configs - Supported models and swarm configs
๐ Research References
Model Swarm implementation inspired by:
- Model Swarms: Collaborative Search via Swarm Intelligence
- Harnessing Multiple LLMs: Survey on LLM Ensemble
- Small Language Models - MIT Tech Review
โญ Star History
If Farnsworth helps you, consider giving it a star! โญ
Built with โค๏ธ for the Claude community
"Good news, everyone!" - Professor Farnsworth