🤖 Databricks MCP Server Template
Host Model Context Protocol (MCP) prompts and tools on Databricks Apps, enabling AI assistants like Claude to interact with your Databricks workspace through a secure, authenticated interface.
What is this?
This template lets you create an MCP server that runs on Databricks Apps. You can:
- 📝 Add prompts as simple markdown files in the
prompts/
folder - 🛠️ Create tools as Python functions that leverage Databricks SDK
- 🔐 Authenticate securely with OAuth through Databricks Apps
- 🚀 Deploy instantly to make your MCP server accessible to Claude
Think of it as a bridge between Claude and your Databricks workspace - you define what Claude can see and do, and this server handles the rest.
How it Works
Architecture Overview
┌─────────────┐ MCP Protocol ┌──────────────────┐ OAuth ┌─────────────────┐
│ Claude │ ◄─────────────────────► │ dba-mcp-proxy │ ◄──────────────────► │ Databricks App │
│ CLI │ (stdio/JSON-RPC) │ (local process) │ (HTTPS/SSE) │ (MCP Server) │
└─────────────┘ └──────────────────┘ └─────────────────┘
▲ │
│ ▼
└────────── Databricks OAuth ──────► Workspace APIs
Components
MCP Server (
server/app.py
): A FastAPI app with integrated MCP server that:- Dynamically loads prompts from
prompts/*.md
files - Exposes Python functions as MCP tools via
@mcp_server.tool
decorator - Handles both HTTP requests and MCP protocol over Server-Sent Events
- Dynamically loads prompts from
Prompts (
prompts/
): Simple markdown files where:- Filename = prompt name (e.g.,
check_system.md
→check_system
prompt) - First line with
#
= description - File content = what gets returned to Claude
- Filename = prompt name (e.g.,
Local Proxy (
dba_mcp_proxy/
): Authenticates and proxies MCP requests:- Handles Databricks OAuth authentication automatically
- Translates between Claude's stdio protocol and HTTP/SSE
- Works with both local development and deployed apps
🎬 Demo
This 10-minute video shows you how to set up and use a Databricks MCP server with Claude: https://www.youtube.com/watch?v=oKE59zgb6e0
This video demonstrates creating your own MCP server with a custom jobs interface in Claude.
Quick Start
Create Your Own MCP Server
Step 1: Use this template
Or use the GitHub CLI:
gh repo create my-mcp-server --template databricks-solutions/custom-mcp-databricks-app --private
Step 2: Clone and setup
# Clone your new repository
git clone https://github.com/YOUR-USERNAME/my-mcp-server.git
cd my-mcp-server
# Run the interactive setup
./setup.sh
This will:
- Configure Databricks authentication
- Set your MCP server name
- Install all dependencies
- Create your
.env.local
file
Step 3: Deploy with Claude
In Claude Code, run:
/setup-mcp
This will:
- Deploy your MCP server to Databricks Apps
- Configure the MCP integration
- Show you available prompts and tools
Then restart Claude Code to use your new MCP server.
Add to Claude CLI
After deployment, add your MCP server to Claude:
# Set your Databricks configuration
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="https://your-app.databricksapps.com" # Get this from ./app_status.sh
export SERVER_NAME="your-server-name" # This comes from config.yaml (set during ./setup.sh)
# Add your MCP server to Claude (user-scoped)
claude mcp add $SERVER_NAME --scope user -- \
uvx --from git+ssh://[email protected]/YOUR-USERNAME/your-repo.git dba-mcp-proxy \
--databricks-host $DATABRICKS_HOST \
--databricks-app-url $DATABRICKS_APP_URL
Local Development
# Clone and setup
git clone <your-repo>
cd <your-repo>
./setup.sh
# Start dev server
./watch.sh
# Set your configuration for local testing
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="http://localhost:8000" # Local dev server
# Add to Claude for local testing
claude mcp add databricks-mcp-local --scope local -- \
uvx --from git+ssh://[email protected]/YOUR-ORG/YOUR-REPO.git dba-mcp-proxy \
--databricks-host $DATABRICKS_HOST \
--databricks-app-url $DATABRICKS_APP_URL
Customization Guide
This template uses FastMCP, a framework that makes it easy to build MCP servers. FastMCP provides two main decorators for extending functionality:
@mcp_server.prompt
- For registering prompts that return text@mcp_server.tool
- For registering tools that execute functions
Adding Prompts
The easiest way is to create a markdown file in the prompts/
directory:
# Get cluster information
List all available clusters in the workspace with their current status
The prompt will be automatically loaded with:
- Name: filename without extension (e.g.,
get_clusters.md
→get_clusters
) - Description: first line after
#
- Content: entire file content
Alternatively, you can register prompts as functions in server/app.py
:
@mcp_server.prompt(name="dynamic_status", description="Get dynamic system status")
async def get_dynamic_status():
# This can include dynamic logic, API calls, etc.
w = get_workspace_client()
current_user = w.current_user.me()
return f"Current user: {current_user.display_name}\nWorkspace: {DATABRICKS_HOST}"
We auto-load prompts/
for convenience, but function-based prompts are useful when you need dynamic content.
Adding Tools
Add a function in server/app.py
using the @mcp_server.tool
decorator:
@mcp_server.tool
def list_clusters(status: str = "RUNNING") -> dict:
"""List Databricks clusters by status."""
w = get_workspace_client()
clusters = []
for cluster in w.clusters.list():
if cluster.state.name == status:
clusters.append({
"id": cluster.cluster_id,
"name": cluster.cluster_name,
"state": cluster.state.name
})
return {"clusters": clusters}
Tools must:
- Use the
@mcp_server.tool
decorator - Have a docstring (becomes the tool description)
- Return JSON-serializable data (dict, list, str, etc.)
- Accept only JSON-serializable parameters
Deployment
# Deploy to Databricks Apps
./deploy.sh
# Check status and get your app URL
./app_status.sh
Your MCP server will be available at https://your-app.databricksapps.com/mcp/
The app_status.sh
script will show your deployed app URL, which you'll need for the DATABRICKS_APP_URL
environment variable when adding the MCP server to Claude.
Authentication
- Local Development: No authentication required
- Production: OAuth is handled automatically by the proxy using your Databricks CLI credentials
Examples
Using with Claude
Once added, you can interact with your MCP server in Claude:
Human: What prompts are available?
Claude: I can see the following prompts from your Databricks MCP server:
- check_system: Get system information
- list_files: List files in the current directory
- ping_google: Check network connectivity
Sample Tool Usage
Human: Can you execute a SQL query to show databases?
Claude: I'll execute that SQL query for you using the execute_dbsql tool.
[Executes SQL and returns results]
Project Structure
├── server/ # FastAPI backend with MCP server
│ ├── app.py # Main application + MCP tools
│ └── routers/ # API endpoints
├── prompts/ # MCP prompts (markdown files)
│ ├── check_system.md
│ ├── list_files.md
│ └── ping_google.md
├── dba_mcp_proxy/ # MCP proxy for Claude CLI
│ └── mcp_client.py # OAuth + proxy implementation
├── client/ # React frontend (optional)
├── scripts/ # Development tools
└── pyproject.toml # Python package configuration
Advanced Usage
Environment Variables
Configure in .env.local
:
DATABRICKS_HOST=https://your-workspace.cloud.databricks.com
DATABRICKS_TOKEN=your-token # For local development
DATABRICKS_SQL_WAREHOUSE_ID=your-warehouse-id # For SQL tools
Creating Complex Tools
Tools can access the full Databricks SDK:
@mcp_server.tool
def create_job(name: str, notebook_path: str, cluster_id: str) -> dict:
"""Create a Databricks job."""
w = get_workspace_client()
job = w.jobs.create(
name=name,
tasks=[{
"task_key": "main",
"notebook_task": {"notebook_path": notebook_path},
"existing_cluster_id": cluster_id
}]
)
return {"job_id": job.job_id, "run_now_url": f"{DATABRICKS_HOST}/#job/{job.job_id}"}
Testing Your MCP Server
This template includes comprehensive testing tools for validating MCP functionality at multiple levels.
Quick Verification
After adding the MCP server to Claude, verify it's working:
# List available prompts and tools
echo "What MCP prompts are available from databricks-mcp?" | claude
# Test a specific prompt
echo "Use the check_system prompt from databricks-mcp" | claude
Comprehensive Testing Suite
The claude_scripts/
directory contains 6 testing tools for thorough MCP validation:
Command Line Tests
# Test local MCP server (requires ./watch.sh to be running)
./claude_scripts/test_local_mcp_curl.sh # Direct HTTP/curl tests with session handling
./claude_scripts/test_local_mcp_proxy.sh # MCP proxy client tests
# Test remote MCP server (requires Databricks auth and deployment)
./claude_scripts/test_remote_mcp_curl.sh # OAuth + HTTP tests with dynamic URL discovery
./claude_scripts/test_remote_mcp_proxy.sh # Full end-to-end MCP proxy tests
Interactive Web UI Tests
# Launch MCP Inspector for visual testing (requires ./watch.sh for local)
./claude_scripts/inspect_local_mcp.sh # Local server web interface
./claude_scripts/inspect_remote_mcp.sh # Remote server web interface
MCP Inspector Features:
- 🖥️ Web-based interface for interactive MCP server testing
- 🔧 Visual tool execution with parameter input forms
- 📊 Real-time request/response monitoring
- 🐛 Protocol-level debugging and error inspection
- 📋 Complete tool and resource discovery
What Each Test Validates
Test Type | Authentication | Protocol | Session Management | Tool Discovery |
---|---|---|---|---|
curl tests | ✅ | ✅ | ✅ | ✅ |
proxy tests | ✅ | ✅ | ✅ | ✅ |
MCP Inspector | ✅ | ✅ | ✅ | ✅ |
All tests dynamically discover app URLs and handle OAuth authentication automatically.
See claude_scripts/README.md
for detailed documentation.
Troubleshooting
- Authentication errors: Run
databricks auth login
to refresh credentials - MCP not found: Ensure the app is deployed and accessible
- Tool errors: Check logs at
https://your-app.databricksapps.com/logz
- MCP connection issues:
- Check Claude logs:
tail -f ~/Library/Logs/Claude/*.log
- Verify the proxy works:
uvx --from git+ssh://... dba-mcp-proxy --help
- Test with echo pipe:
echo "list your mcp commands" | claude
- Check Claude logs:
- Cached version issues: If you get errors about missing arguments after an update:
# Clear uvx cache for this package rm -rf ~/.cache/uv/git-v0/checkouts/*/ # Or clear entire uv cache uv cache clean
Contributing
- Fork the repository
- Add your prompts and tools
- Test locally with
./watch.sh
- Submit a pull request
License
See LICENSE.md