awslabs

AWS Labs Aurora DSQL MCP Server

Community awslabs
Updated

AWS MCP Servers — helping you get the most out of AWS, wherever you use MCP.

AWS Labs Aurora DSQL MCP Server

An AWS Labs Model Context Protocol (MCP) server for Aurora DSQL

Features

  • Converting human-readable questions and commands into structured Postgres-compatible SQL queries and executing them against the configured Aurora DSQL database.
  • Read-only by default, transactions enabled with --allow-writes
  • Connection reuse between requests for improved performance

Prerequisites

  1. An AWS account with an Aurora DSQL Cluster
  2. This MCP server can only be run locally on the same host as your LLM client.
  3. Set up AWS credentials with access to AWS services
    • You need an AWS account with appropriate permissions
    • Configure AWS credentials with aws configure or environment variables

Installation

Install MCP Server

Using uv

  1. Install uv from Astral or the GitHub README
  2. Install Python using uv python install 3.10

Configure the MCP server in your MCP client configuration (e.g., for Amazon Q Developer CLI, edit ~/.aws/amazonq/mcp.json):

{
  "mcpServers": {
    "awslabs.aurora-dsql-mcp-server": {
      "command": "uvx",
      "args": [
        "awslabs.aurora-dsql-mcp-server@latest",
        "--cluster_endpoint",
        "[your dsql cluster endpoint]",
        "--region",
        "[your dsql cluster region, e.g. us-east-1]",
        "--database_user",
        "[your dsql username]",
        "--profile", "default"
      ],
      "env": {
        "FASTMCP_LOG_LEVEL": "ERROR"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Using Docker

  1. 'git clone https://github.com/awslabs/mcp.git'
  2. Go to sub-directory 'src/aurora-dsql-mcp-server/'
  3. Run 'docker build -t awslabs/aurora-dsql-mcp-server:latest .'
  4. Create a env file with tempoary credentials:

Either manually:

# fictitious `.env` file with AWS temporary credentials
AWS_ACCESS_KEY_ID=<from the profile you set up>
AWS_SECRET_ACCESS_KEY=<from the profile you set up>
AWS_SESSION_TOKEN=<from the profile you set up>

Or using aws configure:

aws configure export-credentials --profile your-profile-name --format env > temp_aws_credentials.env | sed 's/^export //' > temp_aws_credentials.env
{
  "mcpServers": {
    "awslabs.aurora-dsql-mcp-server": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "--env-file",
        "/full/path/to/file/above/.env",
        "awslabs/aurora-dsql-mcp-server:latest",
        "--cluster_endpoint", "[your data]",
        "--database_user", "[your data]",
        "--region", "[your data]"
      ]
    }
  }
}

Server Configuration options

--allow-writes

By default, the dsql mcp server does not allow write operations. Any invocations of transact tool will fail in this mode. To use transact tool, allow writes by passing --allow-writes parameter.

--cluster_endpoint

This is mandatory parameter to specify the cluster to connect to. This should be the full endpoint of your cluster, e.g., 01abc2ldefg3hijklmnopqurstu.dsql.us-east-1.on.aws

--database_user

This is a mandatory parameter to specify the user to connect as. For exampleadmin, or my_user. Note that the AWS credentials you are using must havepermission to login as that user. For more information on setting up and usingdatabase roles in DSQL, see Using database roles with IAM roles.

--profile

You can specify the aws profile to use for your credentials. Note that this isnot supported for docker installation.

Using the AWS_PROFILE environment variable in your MCP configuration is alsosupported:

"env": {
  "AWS_PROFILE": "your-aws-profile"
}

If neither is provided, the MCP server defaults to using the "default" profile in your AWS configuration file.

--region

This is a mandatory parameter to specify the region of your DSQL database.

MCP Server · Populars

MCP Server · New

    superglue-ai

    superglue

    superglue integrates & orchestrates APIs from natural language. Agents use it to build deterministic workflows across apps, APIs and databases. Humans use it to generate insights, build automations and manage data.

    Community superglue-ai
    superglue-ai

    docs

    superglue integrates & orchestrates APIs from natural language. Agents use it to build deterministic workflows across apps, APIs and databases. Humans use it to generate insights, build automations and manage data.

    Community superglue-ai
    KemingHe

    Python Dependency Manager Companion MCP Server

    Self-updating MCP server to cross-reference latest official pip, poetry, uv, and conda docs

    Community KemingHe
    apache

    ECharts MCP

    Apache ECharts MCP Server

    Community apache
    wise-vision

    WiseVision ROS2 MCP Server

    Advanced MCP Server ROS 2 bridging AI agents straight into robotics

    Community wise-vision