caiotk

Azure AI MCP Server

Community caiotk
Updated

Azure AI MCP Server

A mission-critical Model Context Protocol (MCP) server providing comprehensive Azure AI services integration with enterprise-grade reliability, observability, and chaos engineering capabilities.

πŸš€ Features

Core Azure AI Services

  • Azure OpenAI: Chat completions, embeddings, and text generation
  • Cognitive Services Text Analytics: Sentiment analysis, entity recognition, key phrase extraction
  • Computer Vision: Image analysis, object detection, OCR
  • Face API: Face detection, recognition, and analysis
  • Azure Storage: Blob storage integration for data persistence

Mission-Critical Capabilities

  • High Availability: Multi-region deployment with automatic failover
  • Observability: Comprehensive logging, metrics, and distributed tracing
  • Security: Azure AD integration, API key management, and encryption at rest/transit
  • Rate Limiting: Intelligent throttling and backpressure handling
  • Retry Logic: Exponential backoff with circuit breaker patterns
  • Chaos Engineering: Built-in chaos testing with Azure Chaos Studio

DevOps & CI/CD

  • Infrastructure as Code: Terraform modules for all environments
  • Multi-Environment: Integration, E2E, and Production pipelines
  • Container Support: Docker containerization with health checks
  • Monitoring: Azure Monitor, Application Insights integration
  • Security Scanning: Automated vulnerability assessments

πŸ“‹ Prerequisites

  • Node.js 18+
  • Azure subscription with appropriate permissions
  • Azure CLI installed and configured
  • Terraform 1.5+
  • Docker (optional, for containerized deployment)

πŸ”§ Installation

1. Clone and Setup

git clone https://github.com/caiotk/nexguideai-azure-ai-mcp-server.git
cd azure-ai-mcp-server
npm install

2. Environment Configuration

Copy the environment template and configure your Azure credentials:

cp .env.example .env

Required environment variables:

# Azure OpenAI
AZURE_OPENAI_ENDPOINT=https://your-openai.openai.azure.com/
AZURE_OPENAI_API_KEY=your-api-key

# Azure Cognitive Services
AZURE_COGNITIVE_SERVICES_ENDPOINT=https://your-region.api.cognitive.microsoft.com/
AZURE_COGNITIVE_SERVICES_KEY=your-key

# Azure Storage
AZURE_STORAGE_CONNECTION_STRING=your-connection-string

# Azure AD (for production)
AZURE_TENANT_ID=your-tenant-id
AZURE_CLIENT_ID=your-client-id
AZURE_CLIENT_SECRET=your-client-secret

# Monitoring
AZURE_APPLICATION_INSIGHTS_CONNECTION_STRING=your-connection-string
LOG_LEVEL=info

3. Build and Run

npm run build
npm start

πŸ—οΈ Architecture

System Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   MCP Client    │────│  Azure AI MCP   │────│  Azure Services β”‚
β”‚                 β”‚    β”‚     Server      β”‚    β”‚                 β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
                              β–Ό
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚   Observability β”‚
                    β”‚   & Monitoring  β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Component Architecture

  • API Layer: MCP protocol implementation with request validation
  • Service Layer: Azure AI service integrations with retry logic
  • Infrastructure Layer: Terraform modules for cloud resources
  • Observability Layer: Logging, metrics, and distributed tracing

πŸ”„ CI/CD Pipeline

Environments

  1. Integration (INT): Feature testing and integration validation
  2. End-to-End (E2E): Full system testing with chaos engineering
  3. Production (PROD): Live environment with blue-green deployment

Pipeline Stages

Build β†’ Test β†’ Security Scan β†’ Deploy INT β†’ E2E Tests β†’ Chaos Tests β†’ Deploy PROD

Deployment Strategy

  • Blue-Green Deployment: Zero-downtime deployments
  • Canary Releases: Gradual traffic shifting for risk mitigation
  • Automated Rollback: Automatic rollback on health check failures

πŸ§ͺ Testing Strategy

Test Pyramid

  • Unit Tests: Individual component testing (Jest)
  • Integration Tests: Service integration validation
  • E2E Tests: Full workflow testing
  • Chaos Tests: Resilience and failure scenario testing

Chaos Engineering

Integrated with Azure Chaos Studio for:

  • Service Disruption: Simulated Azure service outages
  • Network Latency: Increased response times
  • Resource Exhaustion: CPU/Memory pressure testing
  • Dependency Failures: External service failures

πŸ“Š Monitoring & Observability

Metrics

  • Performance: Response times, throughput, error rates
  • Business: API usage, feature adoption, cost optimization
  • Infrastructure: Resource utilization, availability

Logging

  • Structured Logging: JSON format with correlation IDs
  • Log Levels: ERROR, WARN, INFO, DEBUG
  • Centralized: Azure Log Analytics integration

Alerting

  • SLA Monitoring: 99.9% availability target
  • Error Rate Thresholds: >1% error rate alerts
  • Performance Degradation: Response time anomalies

πŸ”’ Security

Authentication & Authorization

  • Azure AD Integration: Enterprise identity management
  • API Key Management: Secure key rotation and storage
  • RBAC: Role-based access control

Data Protection

  • Encryption at Rest: Azure Storage encryption
  • Encryption in Transit: TLS 1.3 for all communications
  • Data Residency: Configurable data location compliance

Security Scanning

  • Dependency Scanning: Automated vulnerability detection
  • SAST: Static application security testing
  • Container Scanning: Docker image vulnerability assessment

πŸš€ Deployment

Local Development

npm run dev

Docker Deployment

npm run docker:build
npm run docker:run

Terraform Deployment

cd terraform/environments/prod
terraform init
terraform plan
terraform apply

πŸ“ˆ Performance

Benchmarks

  • Latency: P95 < 500ms for chat completions
  • Throughput: 1000+ requests/minute sustained
  • Availability: 99.9% uptime SLA

Optimization

  • Connection Pooling: Efficient Azure service connections
  • Caching: Intelligent response caching strategies
  • Rate Limiting: Adaptive throttling based on service limits

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Development Guidelines

  • Follow TypeScript strict mode
  • Maintain 90%+ test coverage
  • Use conventional commits
  • Update documentation for new features

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ†˜ Support

πŸ—ΊοΈ Roadmap

  • Multi-model support (GPT-4, Claude, Gemini)
  • Advanced caching strategies
  • GraphQL API support
  • Kubernetes deployment manifests
  • Advanced chaos engineering scenarios
  • Cost optimization recommendations

Built with ❀️ by NexGuide AI

MCP Server Β· Populars

MCP Server Β· New

    gradion-ai

    ipybox

    A lightweight and secure Python code execution sandbox based on IPython and Docker

    Community gradion-ai
    CrowdStrike

    falcon-mcp

    Connect AI agents to CrowdStrike Falcon for automated security analysis and threat hunting

    Community CrowdStrike
    robotmcp

    ROS MCP Server

    Quickly connect AI agents with Physical Robots (ROS/ROS2) via MCP. No code changes needed in ROS

    Community robotmcp
    seekrays

    SeekCode

    A clean and efficient code snippet and clipboard management tool designed for developers

    Community seekrays
    perplexityai

    Perplexity Ask MCP Server

    A Model Context Protocol Server connector for Perplexity API, to enable web search without leaving the MCP ecosystem.

    Community perplexityai