Pixabay MCP Server
English | 中文
English
A Model Context Protocol (MCP) server that enables AI assistants to search for images and videos on Pixabay.
Features
- 🖼️ search_images - Search for photos, illustrations, and vectors
- 🎬 search_videos - Search for videos and animations
Installation
Method 1: Quick Start with uvx (Recommended)
The easiest way to use this MCP server is with uvx. No manual cloning required!
- Get your Pixabay API Key
- Add the following to your MCP client configuration:
{
"mcpServers": {
"pixabay": {
"command": "uvx",
"args": [
"https://github.com/helloHupc/pixabay_mcp.git"
],
"env": {
"PIXABAY_API_KEY": "your-api-key-here"
}
}
}
}
- Restart your MCP client and start using!
Method 2: Local Development
For development or to customize the code, clone the repository locally:
git clone https://github.com/helloHupc/pixabay_mcp.git
cd pixabay_mcp
Then configure your MCP client:
{
"mcpServers": {
"pixabay": {
"command": "uv",
"args": [
"run",
"--directory", "/path/to/pixabay_mcp",
"python", "src/pixabay_mcp/server.py"
],
"env": {
"PIXABAY_API_KEY": "your-api-key-here"
}
}
}
}
Make sure to replace /path/to/pixabay_mcp with your actual local path.
Get Your API Key
- Create a free account at Pixabay
- Go to API Documentation and copy your API key
Quick Start
- Get your API key from Pixabay
- Copy configuration from Method 1 above
- Replace
your-api-key-herewith your actual API key - Add to your MCP client settings
- Restart your MCP client
- Start searching!
Usage Examples
Once configured, you can ask your AI assistant:
- "Search for photos of yellow flowers"
- "Find some nature videos"
- "Look for vector illustrations of cats"
Project Structure
pixabay_mcp/
├── src/
│ └── pixabay_mcp/
│ ├── __init__.py
│ └── server.py # Main MCP server implementation
├── pyproject.toml # Project configuration
├── uv.lock # Dependency lock file
├── README.md # This file
├── LICENSE # MIT License
└── .gitignore # Git ignore rules
License
MIT License
中文
一个 MCP (Model Context Protocol) 服务,让 AI 助手能够在 Pixabay 上搜索图片和视频。
功能
- 🖼️ search_images - 搜索照片、插画和矢量图
- 🎬 search_videos - 搜索视频和动画
安装
方法 1:使用 uvx 快速开始(推荐)
最简单的使用方式,使用 uvx 直接从 Gitee 运行,无需手动克隆!
- 获取你的 Pixabay API 密钥
- 在 MCP 客户端配置中添加以下内容:
{
"mcpServers": {
"pixabay": {
"command": "uvx",
"args": [
"https://github.com/helloHupc/pixabay_mcp.git"
],
"env": {
"PIXABAY_API_KEY": "你的API密钥"
}
}
}
}
- 重启 MCP 客户端,开始使用!
方法 2:本地开发调试
用于开发或自定义代码,将仓库克隆到本地:
git clone https://github.com/helloHupc/pixabay_mcp.git
cd
然后配置 MCP 客户端:
{
"mcpServers": {
"pixabay": {
"command": "uv",
"args": [
"run",
"--directory", "/path/to/pixabay_mcp",
"python", "src/pixabay_mcp/server.py"
],
"env": {
"PIXABAY_API_KEY": "你的API密钥"
}
}
}
}
请将 /path/to/pixabay_mcp 替换为你的实际本地路径。
获取 API 密钥
快速开始
- 从 Pixabay 获取你的 API 密钥
- 复制上面方法 1 中的配置
- 将
你的API密钥替换为你的实际 API 密钥 - 添加到你的 MCP 客户端设置
- 重启 MCP 客户端
- 开始搜索!
使用示例
配置完成后,你可以这样问 AI 助手:
- "帮我搜索黄色花朵的图片"
- "找一些自然风景的视频"
- "搜索猫咪的矢量插画"
项目结构
pixabay_mcp/
├── src/
│ └── pixabay_mcp/
│ ├── __init__.py
│ └── server.py # MCP 服务器主实现
├── pyproject.toml # 项目配置文件
├── uv.lock # 依赖锁定文件
├── README.md # 本文件
├── LICENSE # MIT 许可证
└── .gitignore # Git 忽略规则
uv 和 uvx 的区别
uv - 通用 Python 项目管理工具
- 用于开发、安装包、运行脚本
- 需要手动管理虚拟环境
- 适合本地开发和调试
uvx - 快速执行工具
- 直接从 PyPI 或 Git 仓库运行包
- 自动管理隔离环境
- 无需手动安装,开箱即用
- 适合快速部署和分享
许可证
MIT 许可证