Cursor MCP (Model Context Protocol)

Cursor MCP is a bridge between Claude's desktop application and the Cursor editor, enabling seamless AI-powered automation and multi-instance management. It's part of the broader Model Context Protocol (MCP) ecosystem, allowing Cursor to interact with various AI models and services through standardized interfaces.

Overview

๐Ÿค– AI Integration

  • Direct integration with Claude's desktop application
  • Ability to leverage other MCP-compatible AI services
  • Real-time context sharing between AI and editor
  • AI-powered automation and code generation

๐Ÿ”Œ MCP Protocol Support

  • Standardized communication with AI models
  • Extensible plugin system for additional MCPs
  • Context-aware command execution
  • Secure token-based authentication

๐Ÿ–ฅ๏ธ Cross-Platform Window Management

  • Seamlessly manage Cursor editor windows across operating systems
  • Focus, minimize, restore, and arrange windows programmatically
  • Track window state changes and positions
  • Handle multiple Cursor instances simultaneously

โŒจ๏ธ Input Automation

  • AI-driven keyboard input with support for:
    • Code generation and insertion
    • Refactoring operations
    • Context-aware completions
    • Multi-cursor editing
  • Intelligent mouse automation including:
    • Smart selection
    • Context-menu operations
    • AI-guided navigation

๐Ÿ”„ Process Management

  • AI-orchestrated instance management
  • Smart workspace organization
  • Automatic context preservation
  • Intelligent session recovery

MCP Integration

Claude Desktop Integration

import { ClaudeMCP } from 'cursor-mcp/claude'

// Connect to Claude's desktop app
const claude = await ClaudeMCP.connect()

// Execute AI-powered operations
await claude.generateCode({
    prompt: 'Create a React component',
    context: currentFileContent,
    language: 'typescript'
})

// Get AI suggestions
const suggestions = await claude.getSuggestions({
    code: selectedText,
    type: 'refactor'
})

Using Multiple MCPs

import { MCPRegistry } from 'cursor-mcp/registry'

// Register available MCPs
MCPRegistry.register('claude', ClaudeMCP)
MCPRegistry.register('github-copilot', CopilotMCP)

// Use different AI services
const claude = await MCPRegistry.get('claude')
const copilot = await MCPRegistry.get('github-copilot')

// Compare suggestions
const claudeSuggestions = await claude.getSuggestions(context)
const copilotSuggestions = await copilot.getSuggestions(context)

Custom MCP Integration

import { BaseMCP, MCPProvider } from 'cursor-mcp/core'

class CustomMCP extends BaseMCP implements MCPProvider {
    async connect() {
        // Custom connection logic
    }

    async generateSuggestions(context: CodeContext) {
        // Custom AI integration
    }
}

// Register custom MCP
MCPRegistry.register('custom-ai', CustomMCP)

Configuration

The tool can be configured through environment variables or a config file at:

  • Windows: %LOCALAPPDATA%\cursor-mcp\config\config.json
  • macOS: ~/Library/Application Support/cursor-mcp/config/config.json
  • Linux: ~/.config/cursor-mcp/config.json

Example configuration:

{
    "mcp": {
        "claude": {
            "enabled": true,
            "apiKey": "${CLAUDE_API_KEY}",
            "contextWindow": 100000
        },
        "providers": {
            "github-copilot": {
                "enabled": true,
                "auth": "${GITHUB_TOKEN}"
            }
        }
    },
    "autoStart": true,
    "maxInstances": 4,
    "windowArrangement": "grid",
    "logging": {
        "level": "info",
        "file": "cursor-mcp.log"
    }
}

Installation

Windows

# Run as Administrator
Invoke-WebRequest -Uri "https://github.com/your-org/cursor-mcp/releases/latest/download/cursor-mcp-windows.zip" -OutFile "cursor-mcp.zip"
Expand-Archive -Path "cursor-mcp.zip" -DestinationPath "."
.\windows.ps1

macOS

# Run with sudo
curl -L "https://github.com/your-org/cursor-mcp/releases/latest/download/cursor-mcp-macos.zip" -o "cursor-mcp.zip"
unzip cursor-mcp.zip
sudo ./macos.sh

Linux

# Run with sudo
curl -L "https://github.com/your-org/cursor-mcp/releases/latest/download/cursor-mcp-linux.zip" -o "cursor-mcp.zip"
unzip cursor-mcp.zip
sudo ./linux.sh

Usage

Basic Usage

import { CursorInstanceManager } from 'cursor-mcp'

// Get the instance manager
const manager = CursorInstanceManager.getInstance()

// Start a new Cursor instance
await manager.startNewInstance()

// Get all running instances
const instances = await manager.getRunningInstances()

// Focus a specific instance
await manager.focusInstance(instances[0])

// Close all instances
await manager.closeAllInstances()

Window Management

import { WindowManager } from 'cursor-mcp'

const windowManager = WindowManager.getInstance()

// Find all Cursor windows
const windows = await windowManager.findCursorWindows()

// Focus a window
await windowManager.focusWindow(windows[0])

// Arrange windows side by side
await windowManager.arrangeWindows(windows, 'sideBySide')

// Minimize all windows
for (const window of windows) {
    await windowManager.minimizeWindow(window)
}

Input Automation

import { InputAutomationService } from 'cursor-mcp'

const inputService = InputAutomationService.getInstance()

// Type text
await inputService.typeText('Hello, World!')

// Send keyboard shortcuts
if (process.platform === 'darwin') {
    await inputService.sendKeys(['command', 'c'])
} else {
    await inputService.sendKeys(['control', 'c'])
}

// Mouse operations
await inputService.moveMouse(100, 100)
await inputService.mouseClick('left')
await inputService.mouseDrag(100, 100, 200, 200)

How It Works

Bridge Architecture

This tool acts as a middleware layer between Cursor and MCP servers:

  1. Cursor Integration:

    • Monitors Cursor's file system events
    • Captures editor state and context
    • Injects responses back into the editor
    • Manages window and process automation
  2. MCP Protocol Translation:

    • Translates Cursor's internal events into MCP protocol messages
    • Converts MCP responses into Cursor-compatible actions
    • Maintains session state and context
    • Handles authentication and security
  3. Server Communication:

    • Connects to Claude's desktop app MCP server
    • Routes requests to appropriate AI providers
    • Manages concurrent connections to multiple MCPs
    • Handles fallbacks and error recovery
graph LR
    A[Cursor Editor] <--> B[Cursor MCP Bridge]
    B <--> C[Claude Desktop MCP]
    B <--> D[GitHub Copilot MCP]
    B <--> E[Custom AI MCPs]

Example Workflow

  1. Code Completion Request:

    // 1. Cursor Event (File Change)
    // When user types in Cursor:
    function calculateTotal(items) {
      // Calculate the total price of items|  <-- cursor position
    
    // 2. Bridge Translation
    const event = {
      type: 'completion_request',
      context: {
        file: 'shopping-cart.ts',
        line: 2,
        prefix: '// Calculate the total price of items',
        language: 'typescript',
        cursor_position: 43
      }
    }
    
    // 3. MCP Protocol Message
    await mcpServer.call('generate_completion', {
      prompt: event.context,
      max_tokens: 150,
      temperature: 0.7
    })
    
    // 4. Response Translation
    // Bridge converts MCP response:
    const response = `return items.reduce((total, item) => {
      return total + (item.price * item.quantity);
    }, 0);`
    
    // 5. Cursor Integration
    // Bridge injects the code at cursor position
    
  2. Code Refactoring:

    // 1. Cursor Event (Command)
    // User selects code and triggers refactor command
    const oldCode = `
      if (user.age >= 18) {
        if (user.hasLicense) {
          if (car.isAvailable) {
            rentCar(user, car);
          }
        }
      }
    `
    
    // 2. Bridge Translation
    const event = {
      type: 'refactor_request',
      context: {
        selection: oldCode,
        command: 'simplify_nesting'
      }
    }
    
    // 3. MCP Protocol Message
    await mcpServer.call('refactor_code', {
      code: event.context.selection,
      style: 'simplified',
      maintain_logic: true
    })
    
    // 4. Response Translation
    const response = `
      const canRentCar = user.age >= 18 
        && user.hasLicense 
        && car.isAvailable;
    
      if (canRentCar) {
        rentCar(user, car);
      }
    `
    
    // 5. Cursor Integration
    // Bridge replaces selected code
    
  3. Multi-File Context:

    // 1. Cursor Event (File Dependencies)
    // When user requests help with a component
    
    // 2. Bridge Translation
    const event = {
      type: 'context_request',
      files: {
        'UserProfile.tsx': '...',
        'types.ts': '...',
        'api.ts': '...'
      },
      focus_file: 'UserProfile.tsx'
    }
    
    // 3. MCP Protocol Message
    await mcpServer.call('analyze_context', {
      files: event.files,
      primary_file: event.focus_file,
      analysis_type: 'component_dependencies'
    })
    
    // 4. Response Processing
    // Bridge maintains context across requests
    

Integration Methods

  1. File System Monitoring:

    import { FileSystemWatcher } from 'cursor-mcp/watcher'
    
    const watcher = new FileSystemWatcher({
      paths: ['/path/to/cursor/workspace'],
      events: ['change', 'create', 'delete']
    })
    
    watcher.on('change', async (event) => {
      const mcpMessage = await bridge.translateEvent(event)
      await mcpServer.send(mcpMessage)
    })
    
  2. Window Integration:

    import { CursorWindow } from 'cursor-mcp/window'
    
    const window = new CursorWindow()
    
    // Inject AI responses
    await window.injectCode({
      position: cursorPosition,
      code: mcpResponse.code,
      animate: true  // Smooth typing animation
    })
    
    // Handle user interactions
    window.onCommand('refactor', async (selection) => {
      const mcpMessage = await bridge.createRefactorRequest(selection)
      const response = await mcpServer.send(mcpMessage)
      await window.applyRefactoring(response)
    })
    
  3. Context Management:

    import { ContextManager } from 'cursor-mcp/context'
    
    const context = new ContextManager()
    
    // Track file dependencies
    await context.addFile('component.tsx')
    await context.trackDependencies()
    
    // Maintain conversation history
    context.addMessage({
      role: 'user',
      content: 'Refactor this component'
    })
    
    // Send to MCP server
    const response = await mcpServer.send({
      type: 'refactor',
      context: context.getFullContext()
    })
    

Security

  • Secure token-based authentication for AI services
  • Encrypted communication channels
  • Sandboxed execution environment
  • Fine-grained permission controls

Requirements

Windows

  • Windows 10 or later
  • Node.js 18 or later
  • Administrator privileges for installation

macOS

  • macOS 10.15 (Catalina) or later
  • Node.js 18 or later
  • Xcode Command Line Tools
  • Accessibility permissions for Terminal

Linux

  • X11 display server
  • Node.js 18 or later
  • xdotool
  • libxtst-dev
  • libpng++-dev
  • build-essential

Development

Setup

# Clone the repository
git clone https://github.com/your-org/cursor-mcp.git
cd cursor-mcp

# Install dependencies
npm install

# Build the project
npm run build

# Run tests
npm test

Running Tests

# Run all tests
npm test

# Run specific test suite
npm test -- window-management

# Run with coverage
npm run test:coverage

Contributing

We welcome contributions! Please see our Contributing Guide for details.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

Acknowledgments

MCP Server ยท Populars

MCP Server ยท New

    chatmcp

    mcpso

    directory for Awesome MCP Servers

    Community chatmcp
    TBXark

    MCP Proxy Server

    An MCP proxy server that aggregates and serves multiple MCP resource servers through a single HTTP server.

    Community TBXark
    ttommyth

    interactive-mcp

    Ask users questions from your LLM! interactive-mcp: Local, cross-platform MCP server for interactive prompts, chat & notifications.

    Community ttommyth
    lpigeon

    ros-mcp-server

    The ROS MCP Server is designed to support robots in performing complex tasks and adapting effectively to various environments by providing a set of functions that transform natural language commands, entered by a user through an LLM, into ROS commands for robot control.

    Community lpigeon
    emicklei

    melrose-mcp

    interactive programming of melodies, producing MIDI

    Community emicklei