๐ง Memory Engineering MCP
Persistent memory and semantic code understanding for AI assistants. Built on MongoDB Atlas Vector Search and Voyage AI embeddings.
๐ฅ The Game Changer: Code Embeddings
This is what makes Memory Engineering different from everything else:
Revolutionary Code Chunking
- Smart Semantic Boundaries: Tracks braces, parentheses, and indentation to capture COMPLETE functions (up to 200 lines) and classes (up to 300 lines)
- Context-Aware: Every chunk includes its imports, dependencies, and surrounding context
- Pattern Detection: Automatically identifies 20+ code patterns (error-handling, async, authentication, etc.)
Why This Matters
// Traditional chunking BREAKS this function in half:
function processPayment(order) { // <- Chunk 1 ends here
validateOrder(order); // <- Chunk 2 starts here, loses context!
// ... 50 more lines
}
// Our chunking keeps it COMPLETE:
function processPayment(order) { // <- Full function preserved
validateOrder(order);
// ... entire function included
} // <- Chunk ends at semantic boundary
Semantic Code Search That Actually Works
# Find similar implementations
search --query "JWT refresh" --codeSearch "similar"
# Find who implements an interface
search --query "AuthProvider" --codeSearch "implements"
# Find usage patterns
search --query "error handling" --codeSearch "pattern"
# Natural language โ Code
search --query "how do we validate users"
# Automatically searches: authenticate, verify, check, validate patterns
๐ง The 7 Core Memories
Inspired by Cline, but enhanced with MongoDB persistence:
- activeContext - What you're doing RIGHT NOW (update every 3-5 min!)
- projectbrief - Core requirements and features
- systemPatterns - Architecture decisions and patterns
- techContext - Stack, dependencies, constraints
- progress - What's done, in-progress, and next
- productContext - Why this exists, user needs
- codebaseMap - File structure with embedded statistics
๐ช Technical Architecture
MongoDB Atlas Integration
- Vector Search: 1024-dimensional embeddings with cosine similarity
- Hybrid Search: Combines semantic + keyword search
- Auto-indexing: Manages compound, text, and vector indexes automatically
- Connection pooling: 5-100 connections with retry logic
Voyage AI Embeddings
- Model: voyage-3 (1024 dimensions)
- Contextualized: Each chunk knows about surrounding code
- Batch processing: 100 chunks at a time for efficiency
- Smart caching: Only re-embeds changed files
Code Intelligence
// What gets captured in each chunk:
interface CodeChunk {
chunk: {
type: 'function' | 'class' | 'method' | 'module';
signature: string; // Full signature with params
content: string; // Complete code
context: string; // Imports and dependencies
startLine: number;
endLine: number;
};
contentVector: number[]; // 1024-dim embedding
metadata: {
patterns: string[]; // Detected patterns
dependencies: string[]; // What it imports
exports: string[]; // What it exports
};
}
โก Quick Start
Installation
npm install -g memory-engineering-mcp
Configure Cursor/.cursor/mcp.json
{
"mcpServers": {
"memory-engineering-mcp": {
"command": "npx",
"args": ["memory-engineering-mcp"],
"env": {
"MONGODB_URI": "your-mongodb-atlas-uri",
"VOYAGE_API_KEY": "your-voyage-api-key"
}
}
}
}
First Run
# Initialize (scans entire codebase, generates embeddings)
memory_engineering_init
# Now search your code semantically!
memory_engineering_search --query "authentication flow" --codeSearch "pattern"
# Update memories as you work
memory_engineering_memory --name activeContext --content "Fixed JWT expiry..."
๐ฏ Real Power Examples
Finding Code You Forgot Exists
search --query "payment processing"
# Finds: processPayment(), handleStripeWebhook(), validateCard()
# Even if you never used the word "payment" in those functions!
Understanding Patterns Across Codebase
search --query "error" --codeSearch "pattern"
# Returns ALL error handling patterns:
# - try/catch blocks
# - .catch() handlers
# - error middleware
# - validation errors
Tracking Decisions
search --query "why Redis"
# Finds the exact activeContext entry where you decided to use Redis
# "Chose Redis for session storage because: 1) Fast lookups 2) TTL support..."
๐ Performance Metrics
- Code sync: Processes files with embeddings in batches of 100
- Search latency: <500ms for 100k chunks
- Memory operations: <100ms
- Embedding dimensions: 1024 (voyage-3 model)
- Chunk sizes: 80-300 lines (adaptive, default 80)
- Pattern detection: 27 patterns recognized
๐ง Advanced Features
Smart Pattern Aliasing
The system understands natural language variations:
- "auth" โ searches: authentication, authorization, login, JWT, token
- "db" โ searches: database, MongoDB, schema, model, collection
- "error handling" โ searches: try-catch, exception, error-handler
Incremental Sync
Only changed files are re-embedded:
// Detects changes via:
- File modification time
- Content hash comparison
- Git diff integration
- Automatic after 24h gap
Context Preservation
Every code chunk maintains context:
// Original file:
import { User } from './models';
import bcrypt from 'bcrypt';
class AuthService {
async validateUser(email: string, password: string) {
// ... implementation
}
}
// Chunk includes:
- Imports (User, bcrypt)
- Class context (AuthService)
- Full method implementation
- Patterns detected: ["authentication", "async", "validation"]
๐ ๏ธ Tools Reference
Tool | Purpose | Key Features |
---|---|---|
memory_engineering_init |
Initialize project | Scans code, creates memories, generates embeddings |
memory_engineering_memory |
Read/Update memories | Unified interface for all 7 memories |
memory_engineering_search |
Semantic search | Memory + code search with patterns |
memory_engineering_sync |
Sync code embeddings | Smart chunking, incremental updates |
memory_engineering_system |
Health & diagnostics | Status, environment, doctor mode |
๐ Why This Works
- Complete Code Understanding: Unlike other systems that break functions arbitrarily, we preserve semantic units
- Rich Embeddings: Each chunk has context, patterns, and relationships
- Behavioral Prompting: Dramatic prompts ensure AI assistants take memory seriously
- MongoDB Scale: Handles millions of chunks with millisecond queries
- Voyage AI Quality: State-of-the-art embeddings optimized for code
๐ License
MIT - See LICENSE file
๐ Links
Built with Model Context Protocol (MCP) by Anthropic