Solaceking

Pinecone MCP Server

Community Solaceking
Updated

Pinecone MCP Server

A Model Context Protocol server for Pinecone vector database operations.

This MCP server provides programmatic access to Pinecone vector database operations, enabling AI assistants to perform semantic search, manage vectors, and interact with your knowledge base through standardized MCP tools.

Features

Tools

๐Ÿ” query_vectors

Perform semantic search on your Pinecone database

  • Input: Text query, optional top_k and include_metadata parameters
  • Output: JSON response with matching vectors and similarity scores
  • Use case: Find relevant documents based on natural language queries
โž• upsert_vectors

Add new documents to your vector database

  • Input: Array of texts, optional metadata and IDs
  • Output: Confirmation of successful vector insertion
  • Use case: Index new documents or update existing knowledge base
๐Ÿ—‘๏ธ delete_vectors

Remove vectors from your database

  • Input: Array of vector IDs or delete_all flag
  • Output: Confirmation of deletion operation
  • Use case: Clean up outdated information or reset database
๐Ÿ“Š get_index_stats

Monitor your Pinecone database

  • Input: None
  • Output: Index statistics including vector count and configuration
  • Use case: Track database usage and performance

Quick Start

Prerequisites

  • Node.js 18+
  • Pinecone account and API key
  • OpenAI API key (for embeddings)

Installation

  1. Clone and install dependencies:
git clone <your-repo-url>
cd pinecone-mcp-server
npm install
  1. Build the server:
npm run build
  1. Configure environment variables:
export PINECONE_API_KEY="your_pinecone_key"
export OPENAI_API_KEY="your_openai_key"
export PINECONE_INDEX_NAME="your_index_name"  # optional, defaults to "ad-assessor-docs"
  1. Run the server:
node build/index.js

MCP Configuration

For Claude Desktop

Add to your MCP configuration file:

MacOS: ~/Library/Application Support/Claude/claude_desktop_config.jsonWindows: %APPDATA%/Claude/claude_desktop_config.json

{
  "mcpServers": {
    "pinecone": {
      "command": "node",
      "args": ["/path/to/pinecone-mcp-server/build/index.js"],
      "env": {
        "PINECONE_API_KEY": "your_key_here",
        "OPENAI_API_KEY": "your_key_here",
        "PINECONE_INDEX_NAME": "your_index_name"
      }
    }
  }
}

For Cline (VSCode)

Add to: %APPDATA%/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json

{
  "mcpServers": {
    "pinecone": {
      "command": "node",
      "args": ["C:\\path\\to\\pinecone-mcp-server\\build\\index.js"],
      "env": {
        "PINECONE_API_KEY": "your_key_here",
        "OPENAI_API_KEY": "your_key_here",
        "PINECONE_INDEX_NAME": "your_index_name"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Docker Deployment

Build Docker Image

docker build -t pinecone-mcp .

Run Container

docker run -e PINECONE_API_KEY=your_key \
           -e OPENAI_API_KEY=your_key \
           -e PINECONE_INDEX_NAME=your_index \
           -p 3000:3000 \
           pinecone-mcp

Docker Compose

version: '3.8'
services:
  pinecone-mcp:
    build: .
    environment:
      - PINECONE_API_KEY=your_key
      - OPENAI_API_KEY=your_key
      - PINECONE_INDEX_NAME=your_index
    ports:
      - "3000:3000"

Development

Project Structure

pinecone-server/
โ”œโ”€โ”€ src/
โ”‚   โ””โ”€โ”€ index.ts          # Main MCP server implementation
โ”œโ”€โ”€ build/
โ”‚   โ””โ”€โ”€ index.js          # Compiled JavaScript
โ”œโ”€โ”€ Dockerfile            # Docker configuration
โ”œโ”€โ”€ package.json          # Dependencies and scripts
โ”œโ”€โ”€ tsconfig.json         # TypeScript configuration
โ””โ”€โ”€ README.md            # This file

Development Commands

# Install dependencies
npm install

# Build for production
npm run build

# Development with auto-rebuild
npm run watch

# Debug with MCP Inspector
npm run inspector

Adding New Tools

  1. Define tool schema in ListToolsRequestSchema handler
  2. Implement tool logic in CallToolRequestSchema handler
  3. Update this README with new tool documentation

API Keys Setup

Pinecone

  1. Sign up at pinecone.io
  2. Create a new project and index
  3. Copy your API key from the dashboard

OpenAI

  1. Sign up at platform.openai.com
  2. Navigate to API Keys section
  3. Create a new secret key

Troubleshooting

Common Issues

"Cannot find module" errors:

  • Ensure all dependencies are installed: npm install
  • Check that the build completed successfully: npm run build

Pinecone connection issues:

  • Verify API key is correct and has proper permissions
  • Check that your index exists and is accessible
  • Ensure your Pinecone environment/region is correct

OpenAI API errors:

  • Confirm API key is valid and has credits
  • Check rate limits and usage quotas
  • Verify the model name is correct (text-embedding-ada-002)

Debugging

Use the MCP Inspector for debugging:

npm run inspector

This provides a web interface to test your MCP server interactively.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

MIT License - see LICENSE file for details

Support

For issues and questions:

MCP Server ยท Populars

MCP Server ยท New

    D4Vinci

    Sponsors

    ๐Ÿ•ท๏ธ An undetectable, powerful, flexible, high-performance Python library to make Web Scraping Easy and Effortless as it should be!

    Community D4Vinci
    FarhanAliRaza

    claude-context-local

    Code search MCP for Claude Code. Make entire codebase the context for any coding agent. Embeddings are created and stored locally. No API cost.

    Community FarhanAliRaza
    awslabs

    AWS Knowledge MCP Server

    AWS MCP Servers โ€” helping you get the most out of AWS, wherever you use MCP.

    Community awslabs
    cert-manager

    cert-manager

    Automatically provision and manage TLS certificates in Kubernetes

    Community cert-manager
    nesquikm

    ๐Ÿฆ† MCP Rubber Duck

    An MCP server that acts as a bridge to query multiple OpenAI-compatible LLMs with MCP tool access. Just like rubber duck debugging, explain your problems to various AI "ducks" who can actually research and get different perspectives!

    Community nesquikm